
adressing the formating
unit 1.1 game 1 dev log

part 1/day 1
day 2 unity jr programercourse
New Page
temp

Introduction to project management and teamwork + design documentation

stolin unity design doc
Stolen Unity Design doc v2
1.Overview
2.Recap the phases of production
3.Overview of project planning
4.Design documents and project plans
5.Managing projects and tracking progress
6.Exercise: Identify tools to support your project management and tracking
7.Preparing to publish
8.Releasing your project
9.Operations activities and retrospectives

unity devlog: jr
programmer
courses

10.Summary

Unit 2

Introduction
Lesson 2.1 - Player Positioning
1.Create a new Project for Prototype 2
2.Add the 3d assets + first few lines of code
3. Instantiation
Random Animal Stampeed
Collision Decisions + GAME OVER

unity quizes (cheet sheets if fail)

questions i got wrong on all of my unity quizzes

Lab 2 - New Project with Primitives
Mod the Cube

as i do courses my formating does change from start to finish, i will attempt to adhear to a
standard or the standard however i will not be updating my formating on older doccuments so
hand in there

adressing the formating

unit 1.1 game 1 dev log

unit 1.1 game 1 dev log

☑ welcome
☑ is a video saying that the course exists

☑ watch, then do
☑ is a video saying watch t hen do what the guy does for the tutuorals
lol

☑ apparently the content will no longer be available as of July 31, 2023
soooooo that's my deadline :D
☑ install unity

☑ I'm using unity 2021.3.24f the lts version
☑ with visual studio code editor 2023 edition
☑ already logged in

☑ if u complete courses u gain xp????
☑ +10 Unity Essentials xp &
☑ +60 programming xp?????????
☑ u need 500 xp to level up past lvl 1
☑ kinda cringe imo

☑ UNIT 1 3d truck driving game where u avoid or crash into boxes
☑ I need this coz camera control and also 3d models not working in gnz

Educator Plan
By the end of this lesson, you will be able to:

 Create a new project through Unity Hub
 Navigate 3D space and the Unity Editor comfortably
 Add and manipulate objects in the scene to position them where you want
 Position a camera in an ideal spot for your game
 Control the layout of Unity Editor to suit your needs

☑ download Prototype 1 - Starter Files.zip
☑ does this link even work in the future???
☑ https://connect-prd-cdn.unity.com/20210923/c709e76b-3e93-4140-8675-
f694b9f04399/Prototype%201%20-%20Starter%20Files.zip

☑ omg they talk so slow, 3x speed it is, tldr make new unity app/folder

part 1/day 1

https://connect-prd-cdn.unity.com/20210923/c709e76b-3e93-4140-8675-f694b9f04399/Prototype%201%20-%20Starter%20Files.zip
https://connect-prd-cdn.unity.com/20210923/c709e76b-3e93-4140-8675-f694b9f04399/Prototype%201%20-%20Starter%20Files.zip
https://connect-prd-cdn.unity.com/20210923/c709e76b-3e93-4140-8675-f694b9f04399/Prototype%201%20-%20Starter%20Files.zip

☑ extract assets from starter files, then import the unity file in the zip
☑ the Project window, in Assets > Scenes > double-click on the Prototype 1 scene to open
☑ delete sample scene?
☑ roblox camera control to look around XD

☐ whoa everything is so small , I was right my models were too big I'm gnz
☐
☐

unit 1.1 game 1 dev log

Man the guy talks slowly,
unit 1.1
important info

your home view if you will. it centers your camera on the object that you have selected.
god I love how smooooooooooooooothe these Phoenix switches are on my keyboard and wish I
could just put them on my k3 but no ;-;

the f key enables focus mode, this is like when u double click the middle mouse button in fusion to
get to a decent reference frame for your object/file. it is primarily used to lock onto an object in
space to move the camera and make it work

alt left click drag allows you to rotate your camera around the object that you have
selected
alt right-click drag allows you to zoom but idk if I like using it but hay information is
information

I can't believe it's an 8-minute video explaining this to the user

unit 1.1-4
in the transform component of an object you can select the menu button and click reset to reset
the cords to all default

apparently, in unity, it's commonly accepted knowledge that each unit is one metre.

meaning yes my objects for my gnz project day 2/3 was indeed too big

they also tell us that we can rename the object in the component's window or in the hierarchy
window

this happened on accident but you can maximize a screen by doing shift+space
they also want us to name the obstacle of our choice obstacle

a 3.5 min video saying

ctrl+p starts/stops play mode

day 2 unity jr
programercourse

and play mode does not save your game state
if you click the arrows on the cube on the top right part of the scene thoe arrows will align your
camera with the axis that you select.
also the circular tool by the move or pan tool is for rotation
the bottom one is for all types of transformation, scale rotation move

uhhh the project folder area if you don't need to see the assets but just need to see file
names/folder system the menu button for the project window has a 1 column layout for efficiency if
you don't have the screen real estate for your desired view
also on the top right you can click layout and change the layout by clicking the presets, personally,
I don't want to use those for what I'm doing but it might be useful for certain game layouts,
troubleshooting or games you are making

you can also save custom layouts

omg, finally I can do 1.2 :D
c# scripting?

just so its easier on other devs and you so it doesn't create problems down the line
DONT RENAME YOUR SCRIPTS
because if u do it might cause problems coz of how its written
just name it what its intended to do
then make more
or merge and fix the bugs

in the tutorial, u can just create a blank script in the project folder area and then drag it to the
object but I can't? maybe it's a new unity thing
BUT
 you can just create one as a new component
c# = c sharp or .cs
in the line of code which apparently doesn't need a ;
public class PlayerController : MonoBehaviour
so the : kind of means x inherits from y
so, in this case, the 3rd word "PlayerController" inherits from the class "MonoBehaviour"
so ig ill write in shorthand
idrk what the tutorial guy means but the void is a method but sure ill go with it
 void Start() is called before the game starts (sort of) or before the first "frame"

 void Update() is called every "frame"

ofc // means everything is a comment on that line from that // mark
It's common practice to capitalize certain things and not capitalize others, ex.
code with capital letters means its class
but lowercase letters are components
 transform.Translate(0 , 0, 1);

so you write code in this way

literally make it go vrooooomm and move forwards
it uses x y z and its 1 unit per frame

okok so now

4.Use a Vector3 to move forward
 transform.Translate(Vector3.forward);
is literally the same thing
but how do we make it so that its more than just along the z axis???
idk its just shorthand for that
we use the Vector3 library ig

we can modify that code to be like 20m/s with this
 transform.Translate(Vector3.forward * Time.deltaTime * 20);

coz delta means change in y
so delta time means change in time
so this means using the vector3 library we will move forward by 1 unit * 1 unit of time (second) *
20
or 1 unit per second * 20
or 20 units per second
or 20u/s
and since each unit is 1m
its 20m/s

OKOKOK
so now RigidBody's
they are component that means the object its assigned to are a physics object, we can give it
gravity and other things with this
sphere colider and mesh colider make it a coliable object and has different ways of interacting with
the player/ a given object
mass is done in kilos :D

component.Method(arguments);

unit 1.1 game 1 dev log

public float speed = 5.0f;

the word public can be changed to private, this denotes the accessability of the variable/class/other

private float speed = 5.0f;

also this is done to initialize the default value of the variable in the script's component tab
they are also known as access modifiers :D

when we do 5 as a variable, its only valid as an intiger, a whole number, so if we want to do
fractional speeds we need to make it a floating point, a decimal number, so we could do 5.0, but its
not understandable because its a decimal number

so since its not an intiger we need to use float to do decimals coz its a floating point number
so then can do 5.0f to turn 5.0 into a readable understandable number for the game
:D
what happens when we do dword :D it doesn't tell us ;-;

anyways next line of code
this is similar to the public float speed = thing BUT
it doesn't give us the number, or object its just a name

normally this doesn't work unless you assign a value in some programming languages but with c#
if the script is assigned to an object ex. the camera you can drag an object into the player variable
to reference what the player variable is, so ex we want the tank to be the player, (later the player
model)

we can just put this code in the first level of the script in the public class and it will allow us to
assign an object to the variable. whoa python is hard lmfao

 public GameObject Player;

ok so next line

in the void update() area

 transform.position = Player.transform.position;

User

New Page

so basically this transforming the position of the camera to be exactly the same as the Players,
including its transformed(updated) position
so since we want to offset that
we can add
+ new Vector3(0, 5, -7)
we need to use a new vector3 variable (xyz)
but since we need to be able to change that

I messed with the code more and got the ideal maybe ggz angels
image.png

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class FollowPlayer : MonoBehaviour
{

 public GameObject Player;
 private Vector3 offset;
 public float camera_x_offset = 0.0f;
 public float camera_y_offset = 5.0f;
 public float camera_z_offset = -7.0f;

 // Camera rotation offsets
 public float camera_x_rotation_offset = 0.0f;
 public float camera_y_rotation_offset = 0.0f;
 public float camera_z_rotation_offset = 0.0f;

 // Start is called before the first frame update
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {
 offset = new Vector3(camera_x_offset, camera_y_offset, camera_z_offset);
 transform.position = Player.transform.position + offset;

 // Apply the rotation offsets

https://library.naruzkurai.tk/uploads/images/gallery/2023-05/kat3fOEPivN6WvnT-image.png

this still follows the player when they move away and jump but hayyy its what I want later on when
I deny up/down / in / out movement

okok so important thing
to midiage or remove studder we could make a smoother with another script
OR fix the problem at the core sortof
do void LateUpdate() instead of Update()
this will make the camera's movement update be after the players position updates :D
BRO
someone should've told me sooner you can make the playmode color change wayyy more
noticable

programming/unity essentials xp +5 each

 Quaternion rotationOffset = Quaternion.Euler(camera_x_rotation_offset, camera_y_rotation_offset,
camera_z_rotation_offset);
 transform.rotation = Player.transform.rotation * rotationOffset;
 }
}

 From the top menu, go to Edit > Preferences (Windows) or Unity > Preferences (Mac)
 In the left menu, choose Colors, then edit the “Playmode tint” color to have a slight color
 Play your project to test it, then close your preferences

unit 1.1 game 1 dev log

temp
using System.Diagnostics;
using System.Collections;
using UnityEngine;

[DebuggerDisplay("{" + nameof(GetDebuggerDisplay) + "(),nq}")]
public class PlayerController : MonoBehaviour
{
 public float speed = 5.0f;
 // Start is called before the first frame update
 void Start()
 {

}

 // Update is called once per frame
 void Update()
 {
 //move the vheicule forward
 transform.Translate(Vector3.forward * Time.deltaTime * speed);
 }

 private string GetDebuggerDisplay()
 {
 return ToString();
 }
}

What you will learn
Absolute Beginner Project Management
-Plan projects in the real-time development cycle
-Manage projects in the real-time development cycle
Summry
Most jobs in the design and development world require teamwork and will use project management
and planning tools to ensure successful project delivery. In this tutorial, you’ll be introduced to key
concepts and best practices used for project planning, production phases, project management,
and working in teams.

Introduction to project
management and teamwork
+ design documentation

Introduction to project management and teamwork + design documentation

because its stolen here's a link to where I got it
https://connect-prd-cdn.unity.com/20201117/bb422f61-9b42-4521-9828-
910aae22e39c/Example%20of%20Project%20Charter.pdf

image.png

so ig this is what it would look like :D

stolin unity design doc

https://connect-prd-cdn.unity.com/20201117/bb422f61-9b42-4521-9828-910aae22e39c/Example%20of%20Project%20Charter.pdf
https://connect-prd-cdn.unity.com/20201117/bb422f61-9b42-4521-9828-910aae22e39c/Example%20of%20Project%20Charter.pdf
https://connect-prd-cdn.unity.com/20201117/bb422f61-9b42-4521-9828-910aae22e39c/Example%20of%20Project%20Charter.pdf
https://library.naruzkurai.tk/uploads/images/gallery/2023-05/LO2YN9BbSS3BMpxn-image.png

Introduction to project management and teamwork + design documentation

again since its stolen heres the link

https://connect-prd-cdn.unity.com/20201117/99fd6c6b-0d44-42f5-9373-
eb8a1887cacf/Project%20Design%20Doc%20TEMPLATE%20-%20[GDOC].pdf

image.png

Stolen Unity Design doc v2

https://connect-prd-cdn.unity.com/20201117/99fd6c6b-0d44-42f5-9373-eb8a1887cacf/Project%20Design%20Doc%20TEMPLATE%20-%20%5BGDOC%5D.pdf
https://connect-prd-cdn.unity.com/20201117/99fd6c6b-0d44-42f5-9373-eb8a1887cacf/Project%20Design%20Doc%20TEMPLATE%20-%20%5BGDOC%5D.pdf
https://library.naruzkurai.tk/uploads/images/gallery/2023-05/VhQqgoqAO8YS9FSZ-image.png

Introduction to project management and teamwork + design documentation

Project management and teamwork are often referred to as “soft skills” for design and
development roles. Although project management can get technical, and there are several
different project management methodologies you might encounter, it primarily takes teamwork —
including communication and organization skills — to be a good project manager. Effective project
management and teamwork involves:

Clear communication with teammates, clients, and other stakeholders
Delivery of a final product to deadline
A final product or output that satisfies the requirements established for the project and
meets the defined goal(s)

In this tutorial, you’ll explore some introductory best practices for managing projects and working
in teams.

1.Overview

Introduction to project management and teamwork + design documentation

Individuals, teams, companies, and organizations will each have their particular methods for
project management, but generally most projects break down into phases.

As you explored when learning about the real time production cycle, typically the phases of
production are:

1. Pre-production: The work done before full-scale production begins, such as
planning, prototyping, pipeline setup, and initial designs.

1. Production: Creation of the product and assets within it, including the creation
of final 2D images and 3D models, audio, lighting, and user experience.

1. Post-production: Work done after the final product appears to be complete,
including quality assurance (QA), editing, testing, bug fixing, and final polishing.

1. Operations: Ongoing work after a product has been released to keep it running, such as
sales, monetization, updates, and continued maintenance.

image.png

Properly planning for each phase of the production cycle is crucial when you need to deliver a
project that is on time and works as expected.

2.Recap the phases of
production

https://learn.unity.com/tutorial/the-real-time-production-cycle
https://library.naruzkurai.tk/uploads/images/gallery/2023-05/SP3finnrRL1NJ168-image.png

Introduction to project management and teamwork + design documentation

hen working on projects, you need to plan appropriate schedules, manage time, communicate, and
collaborate. Even if you’re working on a project independently, it’s likely that you’ll be
communicating with others at some point in the production process, especially when engaging in
user testing.
Let’s explore some guidance for successfully completing and delivering projects, as an individual or
member of a larger team.
Documentation and tracking

Documentation plays a critical role in project management. A design document acts as a single
source of truth, where you can record the specific requirements for the experience that you want to
create. The design document also supports producers and project managers to track design and
development progress.

When managing projects, consistently use design documents in the following ways to guide the
design and development process:

Identify the purpose, audience, and goals of your project.
Identify the necessary project steps by creating a project plan.
Within the project plan, create a timeline with specific deliverables and due dates.
Consistently track your milestones in order to produce deliverables and meet
deadlines.
Assign roles when working in teams, and define and prioritize tasks for you and all
teammates
Make sure you and all teammates are following up and following through on roles
and responsibilities.

Effective time management is critical to timely delivery and completion of the project.
 When managing projects:

Scope time for each phase of the design and development process.
Review your project plan daily, and give brief daily status reports to the project
manager or producer (often these daily updates are called “stand-ups”).
Use contingency planning for any unforeseen delays; reprioritize and update the
tasks and deliverables in your project plans when needed.

3.Overview of project
planning

Time management

https://learn.unity.com/tutorial/introduction-to-user-feedback

Identify which project planning and management tools are suitable for you or
your team; when you’ve chosen them, use them consistently.

Without clear communication, collaboration is challenging at best - and impossible at worst.
Communication is one of the most important skills for working with others in any capacity, and is
vital for effective project management.
 When communicating with others on your project:

Be clear about your progress and any issues that impact the work of others,
whether they are members of your team or supporting external collaborators.
Be respectful of others’ time — and of your own.
When critiquing work, remain constructive and sensitive to the feelings of others.
Focus on making your feedback helpful, specific, and respectful.
Be open to feedback yourself by actively listening and engaging with the person
delivering the feedback. Reflect honestly on how their feedback can be
addressed.

Even if you’re completing a project for personal development or fun, when working with others it’s
important to respect them and have a professional attitude in your work.

 When collaborating on a project with others:

Be punctual.
Promptly reply to collaborators, peers, and clients.
Listen to others’ opinions and contributions.
Actively engage in collaborative work.

Communication

Respect and professionalism

Introduction to project management and teamwork + design documentation

In the pre-production phase at the start of the project, design documents are created to help define
and scope what you are going to create. These documents include:

Game (or Experience) Design Documents (GDDs)
Target user personas
Project charters
Technical specifications

Design documents contain the blueprint for your project. They include:

High level overviews; for example, an overall project vision in the Game (or
Experience) Design Document
Requirements and standards for particular pipelines in the project
Detailed design specifications for particular features

 In your high level design document, you should identify:

The goal and purpose for the project
The intended users and audience
Key features of the project
The final form of delivery

A design document can include diagrams, flow charts, sketches, inspirational images from similar
products, and reference images to capture the intended look and feel of the product.

If you don't already have a design document, you can download a PDF version of the design
document template from the materials section or you can make a Google document copy.

image.png

4.Design documents and
project plans

Design documents

Project charters

https://docs.google.com/document/u/1/d/10lPZ95ViLsOLUKEqLehxSorp7qNQQs-ulBgQq7R5Uws/copy
https://library.naruzkurai.tk/uploads/images/gallery/2023-05/TtcrKP23KoLkzU4B-image.png

Once the design document has been approved and the project is greenlit to be produced, a
project charter is useful, especially when you are working in a team. This is a formal document
that describes the entire project, including the project's objectives, how it will be carried out, and
who the stakeholders are. The project charter is used in both the pre-production and production
phases.

You can download a PDF version of an example project charter in the materials section or make a
Google document copy.

The project charter usually includes:

Reasons for the project
Objectives and constraints of the project
Who the main stakeholders are
Risks identified
Benefits of the project
General overview of the budger

Depending on your project, you may need to create additional supporting documentation during
the pre-production phase to help you scope and plan for production. You can iterate on these
documents throughout pre-production and production, as needed.

These include:

Technical documentation: This includes documents that specify the
architecture and functionality of the technical parts of a project.
Meeting notes: If you’re working in a team, it’s useful to capture meeting notes
to record what the whole team is working on, dependencies, progress, and
blockers.
Proposal or pitch document: If you need to get approval from your company,
or if you are asking investors to fund your project, a formal proposal or pitch
document is recommended.

Additional documentation

https://docs.google.com/document/u/1/d/1h6R70TV3l4yV-l4o_BmBbiZiR3n6HolyD6r1AgP7mIY/copy

Introduction to project management and teamwork + design documentation

Once you have your project clearly scoped out, it is time to start planning how to manage a project
by planning appropriate schedules and managing a project plan. While the project plan is usually
created in pre-production, it is used and iterated upon throughout the production phase to track
the project's progress.
The project plan takes the elements identified in the design document and project charter and sets
specific tasks and deliverable dates. The producer or project manager will often create this plan
and update it as necessary when changes need to be made. They will also create a project
tracker, which can be part of the plan itself or created separately, to measure progress against
the defined tasks and required deliverables. If you don’t create and follow a project plan, the result
is usually scope creep — the continuous adding of new ideas and features to your plan — which
can lead to the project failing, being late, or going over budget.

Some guidelines to successfully track projects, for both individuals and teams, include:

Identify the necessary project steps.
If working in a team, identify and assign specific project roles and
responsibilities.
Create a timeline with specific deliverables and due dates.
Identify common problems and issues in project management, such as scope
creep and overly ambitious design plans, and tight time constraints.
Determine when the completed project is due.
Set due dates for each smaller piece of the project that will build to the overall
project.
Create reasonable time frames for each project phase.
If working in a team, designate task owners for each task on the list.

If you are creating a project for a client, there are some additional considerations that can help
support effective project management:

5.Managing projects and
tracking progress

Creating projects for clients

Identify clear project roles — this includes identifying the person who serves as
the liaison between the client and the group, and key stakeholders for different
elements of the project.
Understand and clarify client expectations.
Plan to support clear communication with the client — identify the ways you will
communicate with your client and any online collaborative tools needed to
review the project with their client.

Introduction to project management and teamwork + design documentation

There are a variety of project management tools that can help you to identify and plan all the steps
of a project . Products like Trello, Favro, Airtable, Monday.com, Google Apps, Jira, and GitHub offer
various features to support individuals and teams to plan and track their workstreams so that they
execute and deliver on time. Many of these project management tools have templates that you can
re-purpose to your particular project needs.

image.png

If you don’t already use one of these tools, take some time to investigate the options available to
you and identify a tool to trial for your next project.

If you do already use one of these tools but it’s not quite right for you, this is a great opportunity to
investigate whether there are new options or features available that might better support you
elsewhere.

Share your experience

If you’ve had a great experience with a particular tool, or discovered a really useful tool in your
research, share your insights in the comments to support other learners!

6.Exercise: Identify tools to
support your project
management and tracking

https://trello.com/
https://www.favro.com/
https://airtable.com/
https://monday.com/
https://workspace.google.com/
https://www.atlassian.com/software/jira
https://github.com/
https://library.naruzkurai.tk/uploads/images/gallery/2023-05/mIbK70GEn9wqos5X-image.png

Introduction to project management and teamwork + design documentation

In the post-production phase, you’ll prepare to publish your project. Your project plan should
account for quality assurance (QA) testing, content editing and revision, bug fixing, and final
polishing of the deliverables.
Let’s consider quality assurance testing in a little more detail.

During the QA testing process, there are two important project management considerations: QA
testing scripts and bug reporting processes.
Test scripts A QA test script is a series of steps for a tester to follow and record their
observations. These scripts are usually created before formal testing starts, and are used to
evaluate the product against specific project requirements and use cases. They may also be used
to test the team’s assumptions about the user experience of the product.

Bug report tracking Bug tracking and resolution is a vital part of polishing the product for
delivery. The tools used to track bug reports vary — Jira and Github are popular choices, but many
individuals and teams use a spreadsheet.
Typical bug reports include:

Title / brief summary: A descriptive title for the bug.
Identified frequency: How often does this bug occur (every time, most times,
randomly, rarely)?
Reproduction steps: Precise steps on how to reproduce the bug. This should be
detailed enough that a developer can recreate the bug themselves without any
additional information.
Detailed description: A more detailed summary of the bug and its impact on
user experience.
Any other observations: These could include thoughts on what may be
causing the bug and other relevant details (for example, “error occurs
inconsistently, but more frequently at night than during the day”).

If you want to learn more about bug reports, review The Art Of The Bug Report at the Ministry of
Testing.

7.Preparing to publish

Quality assurance testing

https://training.atlassian.com/free-training-catalog
https://guides.github.com/features/issues/
https://www.ministryoftesting.com/dojo/lessons/the-art-of-the-bug-report
https://www.ministryoftesting.com/dojo/lessons/the-art-of-the-bug-report

Introduction to project management and teamwork + design documentation

Once your project has been tested, fixed, and validated, you are ready to publish. Your project plan
should account for when and where you are publishing your product — ideally, you’ve been sticking
to your deliverable date, and you are publishing your project on the date you originally identified.

Even if you don’t hit the exact date you identified in pre-production, by following a clear project
plan and making adjustments along the way, you should be within a reasonable range of your
original release date.

8.Releasing your project

Introduction to project management and teamwork + design documentation

The final phase of the production cycle, operations, includes work typically done after a product
has been released to keep it running. Although operations activities generally don’t start until the
release date, they should be identified and planned during pre-production. These activities include
ongoing sales, monetization, updates, and continued maintenance.

Finally, a retrospective should be planned once the project is launched so that you (and your team,
if there was one) can reflect back on the design and development process. Retrospectives help you
identify areas that went well, areas that didn’t go well, and ways to improve for future projects.
One simple approach to conducting a retrospective can be to make a chart with three columns and
identify things that you think you should:

Start doing
Stop doing
Continue doing

There are lots of tools and frameworks available for organizing and facilitating retrospectives if
you’d like to find something a little different that best suits your particular project.

9.Operations activities and
retrospectives
Operations activities

Project retrospectives

Introduction to project management and teamwork + design documentation

In this tutorial, you’ve explored the basics of project management. These are applicable to any
project you work on: big or small, for real-time experience creation, or for any other kind of project!
When you start your next project, use these recommendations to help you stay on track and
deliver on time. Why not set up some documentation and a simple project plan or tracker for your
next portfolio project?

10.Summary

https://learn.unity.com/tutorial/unit-2-
introduction?uv=2021.3&pathwayId=5f7e17e1edbc2a5ec21a20af&missionId=5f71fe63edbc2a002
00e9de0&projectId=5cdcc312edbc2a24a41671e6#5d1ba822edbc2a002175788d

Unit 2

Unit 2

we will make a top down prototype where you shoot things that come after you, kindof like galiga
except in 3d and not at all like galiga XD

Introduction

Unit 2

Summary
Overview:
You will begin this unit by creating a new project for your second Prototype and getting basic
player movement working. You will first choose which character you would like, which types of
animals you would like to interact with, and which food you would like to feed those animals. You
will give the player basic side-to-side movement just like you did in Prototype 1, but then you will
use if-then statements to keep the Player in bounds.

Project Outcome:

The player will be able to move left and right on the screen based on the user’s left and right key
presses, but will not be able to leave the play area on either side.

Materials

Prototype 2 - Starter Files.zip

Select your Unity version
2021.1 - 2021.3

Lesson 2.1 - Player
Positioning

https://connect-prd-cdn.unity.com/20210507/bfd26de3-a68a-4a16-8cf6-8eacf2bb7f75/Prototype%202%20-%20Starter%20Files.zip
https://connect-prd-cdn.unity.com/20210507/bfd26de3-a68a-4a16-8cf6-8eacf2bb7f75/Prototype%202%20-%20Starter%20Files.zip

Unit 2

Open Unity Hub and create an empty “Prototype 2” project in your course directory on
the correct Unity version. If you forget how to do this, refer to the instructions in Lesson
1.1 - Step 1

Click to download the Prototype 2 Starter Files, extract the compressed folder, and then
import the .unitypackage into your project. If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 2

From the Project window, open the Prototype 2 scene and delete the SampleScene

In the top-right of the Unity Editor, change your Layout from Default to your custom
layout

1.Create a new Project for
Prototype 2

https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15
https://connect-prd-cdn.unity.com/20210507/bfd26de3-a68a-4a16-8cf6-8eacf2bb7f75/Prototype%202%20-%20Starter%20Files.zip?_ga=2.29238268.1186801097.1620052249-59568313.1601905412
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2

Unit 2

1. If you want, drag a different material from Course Library > Materials onto the
Ground object

2. Drag 1 Human, 3 Animals, and 1 Food object into the Hierarchy
3. Rename the character “Player”, then reposition the animals and food so you

can see them
4. Adjust the XYZ scale of the food so you can easily see it from above

Attach the script to the Player and open it
In your Assets folder, create a “Scripts” folder, and a “PlayerController” script inside
At the top of PlayerController.cs, declare a new
 [SerializeField]
private float horizontalInput
In Update(), set horizontalInput = Input.GetAxis(“Horizontal”), then test to
make sure it works in the inspector

2.Add the 3d assets + first
few lines of code

using UnityEngine;

public class Movement : MonoBehaviour
{
 [SerializeField]
 private float horizontalInput;
 // Start is called before the first frame update
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {
 horizontalInput = Input.GetAxis("Horizontal");

here we can get our input with this basic code, we use [SerializeField] for sanitization and
allow us to see the value in the inspection panel to make sure we didn't fck up lol
Declare a new public float speed = 10.0f;
here's my code

 }
}

4.Move the player left-to-right

using UnityEngine;

public class Movement : MonoBehaviour
{
 [SerializeField]
 private float horizontalInput;
 [SerializeField]
 private float speed = 30.0f;
 // Start is called before the first frame update
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {
 horizontalInput = Input.GetAxis("Horizontal");
 transform.Translate(Vector3.right * horizontalInput * Time.deltaTime * speed);
 }
}

5+6. Keep the player inbounds

In Update(), write an if-statement checking if the player’s left X position is less than a
certain value
In the if-statement, set the player’s position to its current position, but with a fixed X
location
Repeat this process for the right side of the screen
Declare new xRange variable, then replace the hardcoded values with them
Add comments to your code or not lol

using UnityEngine;

public class Movement : MonoBehaviour
{
 [SerializeField]
 private float horizontalInput;
 [SerializeField]
 private float speed = 10.0f;
 [SerializeField]
 private float xRange = 20.0f;
 // Start is called before the first frame update
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {
 if (transform.position.x < -xRange)
 {
 transform.position = new Vector3(-xRange, transform.position.y , transform.position.z);
 }
 if (transform.position.x > xRange)
 {
 transform.position = new Vector3(xRange, transform.position.y, transform.position.z);
 }
 horizontalInput = Input.GetAxis("Horizontal");
 transform.Translate(Vector3.right * horizontalInput * Time.deltaTime * speed);
 }
}

New Functionality

The player can move left and right based on the user’s left and right key presses

The player will not be able to leave the play area on either side
New Concepts & Skills
Adjust object scale
If-statements
Greater/Less than operators
Next Lesson, We’ll learn how to create and throw endless amounts of food to feed our animals!

now use chat gpt to teach me thing and fix a bug that can occur when you move fast

float clampedX = Mathf.Clamp(desiredpoz.x, -Xrange, Xrange) become the min/max

using UnityEngine;
//needed a bit of editing coz cgpt3.5 is stoooooooopid
public class Movement : MonoBehaviour
{
 [SerializeField]
 private float speed = 10.0f;
 [SerializeField]
 private float xRange = 10.0f;
 [SerializeField]
 private float horizontalInput;
 // Start is called before the first frame update
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {
 horizontalInput = Input.GetAxis("Horizontal");

 // Calculate the desired position based on the input
 Vector3 desiredPosition = transform.position + Vector3.right * -horizontalInput * Time.deltaTime * speed;

 // Clamp the desired position within the x range
 float clampedX = Mathf.Clamp(desiredPosition.x, -xRange, xRange);
 desiredPosition = new Vector3(clampedX, desiredPosition.y, desiredPosition.z);

 // Move the object to the clamped position
 transform.position = desiredPosition;
 }
}

Unit 2

The first thing we must do is give the projectile some forward movement so
it can zip across the scene when it’s launched by the player.

Create a new “MoveForward” script, attach it to the food object, then open it
Declare a new public float speed variable;
In Update(), add transform.Translate(Vector3.forward * Time.deltaTime * speed);
, then save
In the Inspector, set the projectile’s speed variable, then test

Create a new “Prefabs” folder, drag your food into it, and choose Original Prefab
In PlayerController.cs, declare a new public GameObject projectilePrefab; variable

3. Instantiation

1.Make the projectile fly forwards

using UnityEngine;

public class Pizza_gun : MonoBehaviour
{
 public GameObject Ammo;

 public float Weapon_Bullet_Projectile_Speed = 60.0f;
 // Start is called before the first frame update
 void Start()
 {
 Ammo = GetComponent<GameObject>();
 }

 // Update is called once per frame
 void Update()
 {
 transform.Translate(Vector3.forward * Time.deltaTime * Weapon_Bullet_Projectile_Speed);
 }
}

Select the Player in the hierarchy, then drag the object from your Prefabs folder onto the
new Projectile Prefab box in the inspector
Try dragging the projectile into the scene at runtime to make sure they fly
I added the ammo = get component thing for maybe powerups
In PlayerController.cs, in Update(), add an if-statement checking for a spacebar press:
if (Input.GetKeyDown(KeyCode.Space)) {}
Inside the if-statement, add a comment saying that you should // Launch a projectile
from the player
Inside the if-statement, use the Instantiate method to spawn a projectile at the player’s
location with the prefab’s rotation
Select all three animals in the hierarchy and Add Component > Move ForwardRotate
all animals on the Y axis by 180 degrees to face down
Edit their speed values and test to see how it looks
Drag all three animals into the Prefabs folder, choosing “Original Prefab”
Test by dragging prefabs into scene view during gameplay

using UnityEngine;

public class Movement : MonoBehaviour
{
 [SerializeField]
 private float speed = 10.0f;
 [SerializeField]
 private float xRange = 10.0f;
 [SerializeField]
 private float horizontalInput;
 [SerializeField]
 public GameObject ProjectilePrefab;
 // Start is called before the first frame update
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {

 horizontalInput = Input.GetAxis("Horizontal");
 // Calculate the desired position based on the input
 Vector3 desiredPosition = transform.position + Vector3.right * -horizontalInput * Time.deltaTime * speed;

Rotate all animals on the Y axis by 180 degrees to face down/ towards the player
Select all three animals in the hierarchy and Add Component > Move Forward
Edit their speed values and test to see how it looks
Drag all three animals into the Prefabs folder, choosing “Original Prefab”
Test by dragging prefabs into scene view during gameplay

Create “DestroyOutOfBounds” script and apply it to the projectile
Add a new private float topBound variable and initialize it = 30;
Write code to destroy if out of top bounds if (transform.position.z > topBound) {
Destroy(gameObject); }
In the Inspector Overrides drop-down, click Apply all to apply it to prefab

Create else-if statement to check if objects are beneath lowerBound: else if
(transform.position.z < lowerBound)
Apply the script to all of the animals, then Override the prefabs

 // Clamp the desired position within the x range
 float clampedX = Mathf.Clamp(desiredPosition.x, -xRange, xRange);
 desiredPosition = new Vector3(clampedX, desiredPosition.y, desiredPosition.z);
 // Move the object to the clamped position
 transform.position = desiredPosition;
 if (Input.GetKeyDown(KeyCode.Space))
 {
 // shoot pizza
 Instantiate(ProjectilePrefab, transform.position, ProjectilePrefab.transform.rotation);
 }
 }
}

5.Make animals into prefabs

6.Destroy projectiles offscreen

7. Destroy animals offscreen

8.Lesson Recap

New Functionality
The player can press the Spacebar to launch a projectile prefab,

Projectile and Animals are removed from the scene if they leave the screen

New Concepts & Skills
Create Prefabs
Override Prefabs
Test for Key presses
Instantiate objects
Destroy objects
Else-if statements

Next Lesson

Instead of dropping all these animal prefabs onto the scene, we’ll create a herd of animals
roaming the plain!

(

Lesson 2.2 - Food Flight
Skills practiced:
Absolute Beginner Code Comprehension
Interpret simple code
Improve simple code using the features of an IDE
Absolute Beginner Application Scripting
Use common logic structures to control the execution of code.
Write code that utilizes the various Unity APIs
Implement appropriate data types
Write code that integrates into an existing system
Implement a code style that is efficient and easy to read
Prototype new concepts
)

Unit 2

In the Hierarchy, create an Empty object called “SpawnManager”
Create a new script called “SpawnManager”, attach it to the Spawn Manager, and open
it
Declare new public GameObject[] animalPrefabs;
In the Inspector, change the Array size to match your animal count, then assign your
animals by dragging them from the Project window into the empty slots Note: Make sure
you drag them from the Project window; not the Hierarchy! If you're going to spawn
objects, you need to make sure you're using Prefabs, which are stored in the Project
window.

In Update(), write an if-then statement to instantiate a new animal prefab at the top of
the screen if S is pressed
Declare a new public int animalIndex and incorporate it in the Instantiate call, then
test editing the value in the Inspector

In the if-statement checking if S is pressed, generate a random int animalIndex between
0 and the length of the array
Remove the global animalIndex variable, since it is only needed locally in the if-
statement

Replace the X value for the Vector3 with Random.Range(-20, 20), then test
Within the if-statement, make a new local Vector3 spawnPos variable
At the top of the class, create private float variables for spawnRangeX and
spawnPosZ

Random Animal Stampeed
1. Create a spawn manager

2. Spawn an animal if S is pressed

3. Spawn random animals from an array

4. Randomize the spawn location

5. Change the perspective of the camera

Toggle between Perspective and Isometric view in the Scene view to appreciate the
difference
Select the camera and change the Projection from “Perspective” to “Orthographic”

6. Lesson Recap

New Functionality

The player can press the S to spawn an animal
Animal selection and spawn location are randomized
Camera projection (perspective/orthographic) selected

New Concepts & Skills

Spawn Manager
Arrays
Keycodes
Random generation
Local vs Global variables
Perspective vs Isometric projections

Next Lesson

Using collisions to feed our animals!

Unit 2

In SpawnManager.cs, create a new void SpawnRandomAnimal() {} function beneath
Update()
Cut and paste the code from the if-then statement to the new function
Call SpawnRandomAnimal(); if S is pressed

In Start(), use InvokeRepeating to spawn the animals based on an interval, then test.
Remove the if-then statement that tests for S being pressed
Declare new private startDelay and spawnInterval variables then playtest and tweak
variable values

Double-click on one of the animal prefabs, then Add Component > Box Collider
Click Edit Collider, then drag the collider handles to encompass the object

Collision Decisions + GAME
OVER
1. Make a new method to spawn
animals

2. Spawn the animals at timed
intervals

3. Add collider and trigger
components

Check the “Is Trigger” checkbox
Repeat this process for each of the animals and the projectile
Add a RigidBody component to the projectile and uncheck “use gravity”

Create a new DetectCollisions.cs script, add it to each animal prefab, then open it
Before the final } add an OnTriggerEnter function using autocomplete
In OnTriggerEnter, put Destroy(gameObject);, then test
In OnTriggerEnter, put Destroy(other.gameObject);

In DestroyOutOfBounds.cs, in the else-if condition that checks if the animals reach the
bottom of the screen, add a Game Over messsage: Debug.Log(“Game Over!”)
Clean up your code with comments
If using Visual Studio, Click Edit > Advanced > Format document to fix any indentation
issues (On a Mac, click Edit > Format > Format Document)

New Functionality
Animals spawn on a timed interval and walk down the screen
When animals get past the player, it triggers a “Game Over” message
If a projectile collides with an animal, both objects are removed

New Concepts & Skills
Create custom methods/functions
InvokeRepeating() to repeat code
Colliders and Triggers
Override functions
Log Debug messages to console

Pizza_gun

using UnityEngine;

4. Destroy objects on collision

5. Trigger a “Game Over” message

6. Lesson Recap

Spawn_manager

public class Pizza_gun : MonoBehaviour
{
 [SerializeField]
 public float Weapon_Bullet_Projectile_Speed = 60.0f;
 [SerializeField]
 private float topBound = -60;

 // Update is called once per frame
 void Update()
 {
 transform.Translate(Vector3.forward * Time.deltaTime * Weapon_Bullet_Projectile_Speed);

 if (transform.position.z < topBound)
 {
 Destroy(gameObject);
 }

 }
 private void OnTriggerEnter(Collider other)
 {
 Destroy(gameObject);
 Destroy(other.gameObject);
 }
}

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class SpawnManager : MonoBehaviour
{
 public GameObject[] animalPrefabs = new GameObject[10];
 [SerializeField]
 private float spawnRangeX = 20.0f;
 [SerializeField]
 private float spawnPozY = -20.0f;
 [SerializeField]
 private float startDelay = 5f;
 [SerializeField]

 private float spawnInterval = 2f;
 // Start is called before the first frame update
 void Start()
 {
 // invoke repeating, will make the method or void def function with name "nameInQuotes"
 // it will call that function after , delay, then chozen interval
 InvokeRepeating("SpawnRandomAnimal", startDelay, spawnInterval);
 }

 // Update is called once per frame
 void Update()
 {
 if (Input.GetKeyDown(KeyCode.S))
 {
 SpawnRandomAnimal();
 }
 }
 void SpawnRandomAnimal()
 {
 // Select a random index within the array range
 int random_animal_Index = Random.Range(0, animalPrefabs.Length);
 Vector3 spawnPos = new Vector3(Random.Range(-spawnRangeX, spawnRangeX), spawnPozY, -
30);
 // Instantiate the selected animalPrefab
 Instantiate(animalPrefabs[random_animal_Index], spawnPos,
 animalPrefabs[random_animal_Index].transform.rotation);
 }
}

movement

using UnityEngine;

public class Movement : MonoBehaviour
{
 [SerializeField]
 private float speed = 10.0f;
 [SerializeField]
 private float xRange = 10.0f;
 [SerializeField]

Animal Movement

 private float horizontalInput;
 [SerializeField]
 public GameObject ProjectilePrefab;
 // Start is called before the first frame update
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {

 horizontalInput = Input.GetAxis("Horizontal");
 // Calculate the desired position based on the input
 Vector3 desiredPosition = transform.position + Vector3.right * -horizontalInput * Time.deltaTime
* speed;
 // Clamp the desired position within the x range
 float clampedX = Mathf.Clamp(desiredPosition.x, -xRange, xRange);
 desiredPosition = new Vector3(clampedX, desiredPosition.y, desiredPosition.z);
 // Move the object to the clamped position
 transform.position = desiredPosition;
 if (Input.GetKeyDown(KeyCode.Space))
 {
 // shoot pizza
 Instantiate(ProjectilePrefab, transform.position, ProjectilePrefab.transform.rotation);
 }
 }
}

using UnityEngine;

public class AnimalMovement : MonoBehaviour
{

 public float Animal_Movement_Speed = 50.0f;
 public float lowerBound = 50;

 // Start is called before the first frame update
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {
 transform.Translate(Vector3.forward * Time.deltaTime * Animal_Movement_Speed);
 if (transform.position.z > lowerBound)
 {
 Destroy(gameObject);
 Debug.Log("In the vernacular of your people... \n Game Over!");
 }
 }
}

unity quizes (cheet sheets if
fail)

unity quizes (cheet sheets if fail)

If you want to move the character up continuously as the player presses the up arrow, what
code would be best in the two blanks below:

GetKey(KeyCode.UpArrow)
GetKeyDown(UpArrow)
GetKeyUp(KeyCode.Up)
GetKeyHeld(Vector3.Up)
Incorrect
“Input.GetKey” tests for the user holding down a key (as opposed to KeyKeyDown, which test
for a single press down of a Key).

You’re trying to create some logic that will tell the user to speed up if they’re going too slow or
to slow down if they’re going too fast. How should you arrange the lines of code below to
accomplish that?

questions i got wrong on all
of my unity quizzes
Question 5

Question 10

4, 6, 1, 2, 5, 9, 7, 8, 3
void Update() { if (speed < 10) {Debug.Log(speedUp); } else if (speed > 60) {
Debug.Log(slowDown); } } private float speed; private string slowDown = "Slow down!"; private
string speedUp = "Speed up!";
6, 1, 2, 5, 7, 8, 3, 4, 9
if (speed < 10) { Debug.Log(speedUp); } else if (speed > 60) { Debug.Log(slowDown); } private float
speed; private string slowDown = "Slow down!"; private string speedUp = "Speed up!"; void Update()
{ }
7, 8, 3, 4, 6, 5, 2, 1, 9
private float speed; private string slowDown = "Slow down!"; private string speedUp = "Speed up!";
void Update() { if (speed < 10) { Debug.Log(slowDown); } else if (speed > 60) {
Debug.Log(speedUp); } }
7, 8, 3, 4, 6, 1, 2, 5, 9
private float speed; private string slowDown = "Slow down!"; private string speedUp = "Speed up!";
void Update() { if (speed < 10) { Debug.Log(speedUp); } else if (speed > 60) {
Debug.Log(slowDown); } }
Incorrect
All variables should be declared first, then the void method, then the if-condition telling them
to speed up, then the else condition telling them to slow down.

Question 6

Using the information shown in the autocomplete pop-up window below, which of the following
would be a valid call of the Instantiate method?

Select image to expand

Instantiate(objectPrefab.transform, spawner, true);

Instantiate(objectPrefab, spawner, false);

Instantiate(objectPrefab, spawner.transform, true);

Instantiate(objectPrefab, spawner, bool);

Incorrect

You can see from the tooltip that the Instantiate method can receive 3 parameters with types in
the following order: Object, Transform, bool. That means that the first parameter can be an object
(objectPrefab) the second can be a transform of an object (spawner.transform) and the third must
be a bool value (e.g. true or false).

"Just like we did with the Prototype, the first thing we need to do is create a new blank project
"

1. Create a new Unity project called “Personal Project” using the 3D template and setting
the location to the “Create with Code” folder

2. After Unity opens, select your custom Layout
3. In the Project window, Assets > Scenes, rename “SampleScene” to “My Game”

"To orient yourself in the scene and not feel like you’re floating around in mid-air, it’s always
good to start by adding a background / ground object"

1. In the Hierarchy, Right-click > 3D Object > Plane to add a plane to your scene
2. In the Plane’s Inspector, in the top-right of the Transform component, click on the three

dots icon > Reset
1. Note: the three dots will appear as a gear icon in older versions of Unity.

3. Increase the XYZ scale of the plane to (5, 1, 5)
4. Adjust your position in Scene view so you have a good view of the Plane

 "Now that we have the empty plane object set up, we can add the star of the show: the player
object"

1. In the Hierarchy, Right-click > 3D Object > Sphere, then rename it “Player”
2. In Assets, Right-click > Create > Folder named “Materials”
3. Inside “Materials”, Right-click > Create > Material and rename it “Blue”
4. In Blue’s Inspector, click on the Albedo color box and change it to a blue
5. Drag the material from your Assets onto the Player object

 "Now that we have the player in there, we need the best view of it, depending on our type of
project"

Lab 2 - New Project with
Primitives
1.Create a new Unity Project and rename your scene

2.Create a background plane

3.Create primitive Player with a new material

4.Position camera based on project type

https://learn.unity.com/tutorial/project-setup-processes#60f6aedeedbc2a7e96802196

1. For a top-down game, position the camera at (0, 10, 0) directly over the player and
rotate it 90 degrees on the X axis

2. For a side-view game, rotate the Plane by -90 degrees on the X axis
3. For an third-person view game, move the camera up on the Y and Z axes and increase

its rotation on the X axis

 "Now that we know how to make primitives, let’s go ahead and make one for each object in our
project"

1. In the Hierarchy, create new Cubes, Spheres, and Capsules for all other main objects,
renaming them, repositioning them, and scaling them

2. In your Materials folder, create new materials for as many colors as you have unique
objects, editing their color to match their name, then apply those materials to your
objects

3. Position all of your objects in locations relative to each other that make sense

 "Since we’re going to be putting our hearts and souls into this project, it’s always good to make
backups"

1. Save your Scene
2. In the Project window, Right-click on the “Assets” folder > Export Package, then click

Export
3. Create a new “Backups” folder in your Personal Project folder, then save it with your

name and the version number (e.g. Carl_V0.1.unitypackage”)

New progress
New project for your Personal Project
Camera positioned and rotated based on project type
All key objects in scene with unique materials

New concepts & skills:
Primitives
Create new materials
Export Unity packages

5.Enemies, obstacles, projectiles & materials

6.Export a Unity Package backup file

7.Lesson Recap

Summary : In this exercise, you'll be challenged to modify a provided script to change the behavior
of an object it's applied to.

Type:Tutorial

Level:Beginner

Xp: 60
Estimated time to complete: 30 Mins

Materials: ModTheCubeChallengeAssets.zip

In this mission you learned how to open, read, and modify scripts. You practiced fundamental
programming challenges, and hopefully you’re starting to feel comfortable with basic scripting. In
this exercise, you’ll be tasked with modifying the behavior of an already existing script. We’re
leaving this challenge open-ended, so now’s the time to get creative!

1. Download ModTheCubeChallengeAssets.zip.
2. To unzip the contents of the folder, right-click the folder and select Extract All (macOS:

double-click the zipped folder). Inside you will find ModTheCube.unitypackage.

Note: While it is possible to view the contents of a folder while it’s still zipped, the
data is still compressed. Attempting to import the contents of the
ModThCubeChallengeAssets folder while it’s still zipped will result in an error
message in Unity. Ensure that you have unzipped the folder before proceeding to
the next step.

3. Create a new Unity project using the 3D template - remember to use one of the supported
versions of Unity (2018.4LTS, 2019.4LTS, or 2020.3LTS).

Mod the Cube

1.Overview

2.Download the provided assets and import them into a
new Unity Project

https://connect-prd-cdn.unity.com/20201026/b3aa8c3a-1cb7-49eb-b835-aa4eefc8b1e0/ModTheCubeChallengeAssets.zip
https://connect-prd-cdn.unity.com/20201026/b3aa8c3a-1cb7-49eb-b835-aa4eefc8b1e0/ModTheCubeChallengeAssets.zip?_ga=2.132173388.37272804.1639415162-1635354840.1616306530
https://learn.unity.com/tutorial/project-setup-processes#60f6aedeedbc2a7e96802196

4. Import ModTheCube.unitypackage into your new 3D template project.

Before you begin editing the code, take a few minutes to understand what the script does by
default. The imported .unitypackage contains three items: a C# script, a material, and a scene.

1. Open the scene located in the ModTheCube folder.

The only thing in the scene aside from the Camera and Directional Light is a cube.
Attached to the cube is the script you will be modifying.

2. Enter Play mode (select the play button on the toolbar) and observe the default behavior
of the script assigned to the cube.
When you enter Play mode, you will observe several of the cube’s properties change. All
of these changes are hardcoded into the cube.cs script attached to the cube in the scene.
This means that the cube will be modified in the same way each time the scene is run.

Now that you understand what the cube script is doing, you can begin to customize it. As
previously mentioned, all of the changes the script is making to the cube are specified in the code.
It would be easier to control the cube from the Unity Editor instead of editing the script. You can
make this possible by changing variables to be public. Public variables appear in the Inspector
window where you can modify their values.

3.Observe the default script functionality

4.Modify the cube.cs script

https://learn.unity.com/tutorial/project-setup-processes#60ed7a91edbc2a002096b762
https://library.naruzkurai.com/uploads/images/gallery/2023-06/KrH0KYxBLzveE7KR-image.png

1. Open the cube.cs script in your code editor and observe the code.
2. Identify at least two changes that you can make to the cube’s behavior.

Change the cube's location (transform).
Change the cube's scale.
Change the angle at which the cube rotates.
Change the cube’s rotation speed.
Change the cube’s material color.
Change the cube’s material opacity.If you’re feeling confident, you can attempt the
following as well:
Modify any of the changes above so they change randomly each time the scene is
played.
Add extra functionality to the cube. For example, how might you change the color of
the cube over time?

3. Implement your planned changes in the code.
4. Test the scene regularly as you work to ensure your code is performing as expected.

Now that you have edited your script and thoroughly tested your changes, your remaining task is
to submit your project here and show off your work! You will create a WebGL build of your project,
upload it to Unity Play, and then complete this challenge by linking your submission below.

1. If you haven’t already done so, frame your camera in the scene so it’s easy to see the
cube in the Play view.

2. Save your scene.
3. Ensure that your version of Unity has WebGL installed. Not sure if it does, or don’t know

how to add it? Refer to step 2 of the Create and publish WebGL Builds tutorial.
4. Install the WebGL Publisher package. This package will allow you to easily publish your

project on Unity Play. If you aren’t sure if you have the package or don’t know how to add
it, refer to the tutorial linked in the step above.

5. Create a WebGL build of your project. This may take a few minutes, depending on your
computer. If you need help creating the build, refer to step 4 of Create and publish WebGL
builds.

6. Publish your WebGL build on Unity Play. If you need help publishing on Unity Play, refer to
step 6 of Create and publish WebGL builds.

7. Copy your Unity Play link, and paste it below!

You’ll know you’re successful if you’ve met these criteria:

You’ve modified the cube script so that at least two changes are made to the cube’s
behavior.
You’ve created a WebGL build of your project.
You’ve uploaded the WebGL build to Unity Play.

5.Create a WebGL project showing off your modded cube

6.Criteria

https://learn.unity.com/tutorial/creating-and-publishing-webgl-builds#601abb0cedbc2a0027bad0e3
https://learn.unity.com/tutorial/creating-and-publishing-webgl-builds#601abbf4edbc2a00203665e6
https://learn.unity.com/tutorial/creating-and-publishing-webgl-builds#601abbf4edbc2a00203665e6
https://learn.unity.com/tutorial/creating-and-publishing-webgl-builds#601abce4edbc2a00214a1278

You’ve copied your Unity Play link for submission.

Congratulations on completing the first mission in Junior Programmer! You now have a strong
foundational understanding of the structure of basic scripts and how to make simple modifications.
As you continue through the pathway, consider taking time to think about how you might modify
other scripts you encounter to customize them to your liking. Sometimes the best way to reinforce
what you’ve learned is to apply it in different ways on your own!

Paste your Unity Play link below!
link to the original unity course

7.Next steps

8.Submission

https://learn.unity.com/tutorial/mod-the-cube?uv=2021.3&labelRequired=true&pathwayId=5f7e17e1edbc2a5ec21a20af&missionId=5f71fe63edbc2a00200e9de0

