
https://learn.unity.com/tutorial/unit-2-
introduction?uv=2021.3&pathwayId=5f7e17e1edbc2a5ec21a20af&missionId=5f71fe63edbc2a002
00e9de0&projectId=5cdcc312edbc2a24a41671e6#5d1ba822edbc2a002175788d

Introduction
Lesson 2.1 - Player Positioning
1.Create a new Project for Prototype 2
2.Add the 3d assets + first few lines of code
3. Instantiation
Random Animal Stampeed
Collision Decisions + GAME OVER

Unit 2

we will make a top down prototype where you shoot things that come after you, kindof like galiga
except in 3d and not at all like galiga XD

Introduction

Summary
Overview:
You will begin this unit by creating a new project for your second Prototype and getting basic
player movement working. You will first choose which character you would like, which types of
animals you would like to interact with, and which food you would like to feed those animals. You
will give the player basic side-to-side movement just like you did in Prototype 1, but then you will
use if-then statements to keep the Player in bounds.

Project Outcome:

The player will be able to move left and right on the screen based on the user’s left and right key
presses, but will not be able to leave the play area on either side.

Materials

Prototype 2 - Starter Files.zip

Select your Unity version
2021.1 - 2021.3

Lesson 2.1 - Player
Positioning

https://connect-prd-cdn.unity.com/20210507/bfd26de3-a68a-4a16-8cf6-8eacf2bb7f75/Prototype%202%20-%20Starter%20Files.zip
https://connect-prd-cdn.unity.com/20210507/bfd26de3-a68a-4a16-8cf6-8eacf2bb7f75/Prototype%202%20-%20Starter%20Files.zip

Open Unity Hub and create an empty “Prototype 2” project in your course directory on
the correct Unity version. If you forget how to do this, refer to the instructions in Lesson
1.1 - Step 1

Click to download the Prototype 2 Starter Files, extract the compressed folder, and then
import the .unitypackage into your project. If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 2

From the Project window, open the Prototype 2 scene and delete the SampleScene

In the top-right of the Unity Editor, change your Layout from Default to your custom
layout

1.Create a new Project for
Prototype 2

https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15
https://connect-prd-cdn.unity.com/20210507/bfd26de3-a68a-4a16-8cf6-8eacf2bb7f75/Prototype%202%20-%20Starter%20Files.zip?_ga=2.29238268.1186801097.1620052249-59568313.1601905412
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2

1. If you want, drag a different material from Course Library > Materials onto the
Ground object

2. Drag 1 Human, 3 Animals, and 1 Food object into the Hierarchy
3. Rename the character “Player”, then reposition the animals and food so you

can see them
4. Adjust the XYZ scale of the food so you can easily see it from above

Attach the script to the Player and open it
In your Assets folder, create a “Scripts” folder, and a “PlayerController” script inside
At the top of PlayerController.cs, declare a new
 [SerializeField]
private float horizontalInput
In Update(), set horizontalInput = Input.GetAxis(“Horizontal”), then test to
make sure it works in the inspector

2.Add the 3d assets + first
few lines of code

using UnityEngine;

public class Movement : MonoBehaviour
{
 [SerializeField]
 private float horizontalInput;
 // Start is called before the first frame update
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {
 horizontalInput = Input.GetAxis("Horizontal");
 }
}

here we can get our input with this basic code, we use [SerializeField] for sanitization and
allow us to see the value in the inspection panel to make sure we didn't fck up lol
Declare a new public float speed = 10.0f;
here's my code

In Update(), write an if-statement checking if the player’s left X position is less than a
certain value

4.Move the player left-to-right

using UnityEngine;

public class Movement : MonoBehaviour
{
 [SerializeField]
 private float horizontalInput;
 [SerializeField]
 private float speed = 30.0f;
 // Start is called before the first frame update
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {
 horizontalInput = Input.GetAxis("Horizontal");
 transform.Translate(Vector3.right * horizontalInput * Time.deltaTime * speed);
 }
}

5+6. Keep the player inbounds

In the if-statement, set the player’s position to its current position, but with a fixed X
location
Repeat this process for the right side of the screen
Declare new xRange variable, then replace the hardcoded values with them
Add comments to your code or not lol

using UnityEngine;

public class Movement : MonoBehaviour
{
 [SerializeField]
 private float horizontalInput;
 [SerializeField]
 private float speed = 10.0f;
 [SerializeField]
 private float xRange = 20.0f;
 // Start is called before the first frame update
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {
 if (transform.position.x < -xRange)
 {
 transform.position = new Vector3(-xRange, transform.position.y , transform.position.z);
 }
 if (transform.position.x > xRange)
 {
 transform.position = new Vector3(xRange, transform.position.y, transform.position.z);
 }
 horizontalInput = Input.GetAxis("Horizontal");
 transform.Translate(Vector3.right * horizontalInput * Time.deltaTime * speed);
 }
}

New Functionality

The player can move left and right based on the user’s left and right key presses

The player will not be able to leave the play area on either side
New Concepts & Skills
Adjust object scale
If-statements
Greater/Less than operators
Next Lesson, We’ll learn how to create and throw endless amounts of food to feed our animals!

now use chat gpt to teach me thing and fix a bug that can occur when you move fast

float clampedX = Mathf.Clamp(desiredpoz.x, -Xrange, Xrange) become the min/max

using UnityEngine;
//needed a bit of editing coz cgpt3.5 is stoooooooopid
public class Movement : MonoBehaviour
{
 [SerializeField]
 private float speed = 10.0f;
 [SerializeField]
 private float xRange = 10.0f;
 [SerializeField]
 private float horizontalInput;
 // Start is called before the first frame update
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {
 horizontalInput = Input.GetAxis("Horizontal");

 // Calculate the desired position based on the input
 Vector3 desiredPosition = transform.position + Vector3.right * -horizontalInput * Time.deltaTime * speed;

 // Clamp the desired position within the x range
 float clampedX = Mathf.Clamp(desiredPosition.x, -xRange, xRange);
 desiredPosition = new Vector3(clampedX, desiredPosition.y, desiredPosition.z);
 // Move the object to the clamped position

 transform.position = desiredPosition;
 }
}

The first thing we must do is give the projectile some forward movement so
it can zip across the scene when it’s launched by the player.

Create a new “MoveForward” script, attach it to the food object, then open it
Declare a new public float speed variable;
In Update(), add transform.Translate(Vector3.forward * Time.deltaTime * speed);
, then save
In the Inspector, set the projectile’s speed variable, then test

Create a new “Prefabs” folder, drag your food into it, and choose Original Prefab
In PlayerController.cs, declare a new public GameObject projectilePrefab; variable

3. Instantiation

1.Make the projectile fly forwards

using UnityEngine;

public class Pizza_gun : MonoBehaviour
{
 public GameObject Ammo;

 public float Weapon_Bullet_Projectile_Speed = 60.0f;
 // Start is called before the first frame update
 void Start()
 {
 Ammo = GetComponent<GameObject>();
 }

 // Update is called once per frame
 void Update()
 {
 transform.Translate(Vector3.forward * Time.deltaTime * Weapon_Bullet_Projectile_Speed);
 }
}

Select the Player in the hierarchy, then drag the object from your Prefabs folder onto the
new Projectile Prefab box in the inspector
Try dragging the projectile into the scene at runtime to make sure they fly
I added the ammo = get component thing for maybe powerups
In PlayerController.cs, in Update(), add an if-statement checking for a spacebar press:
if (Input.GetKeyDown(KeyCode.Space)) {}
Inside the if-statement, add a comment saying that you should // Launch a projectile
from the player
Inside the if-statement, use the Instantiate method to spawn a projectile at the player’s
location with the prefab’s rotation
Select all three animals in the hierarchy and Add Component > Move ForwardRotate
all animals on the Y axis by 180 degrees to face down
Edit their speed values and test to see how it looks
Drag all three animals into the Prefabs folder, choosing “Original Prefab”
Test by dragging prefabs into scene view during gameplay

using UnityEngine;

public class Movement : MonoBehaviour
{
 [SerializeField]
 private float speed = 10.0f;
 [SerializeField]
 private float xRange = 10.0f;
 [SerializeField]
 private float horizontalInput;
 [SerializeField]
 public GameObject ProjectilePrefab;
 // Start is called before the first frame update
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {

 horizontalInput = Input.GetAxis("Horizontal");
 // Calculate the desired position based on the input
 Vector3 desiredPosition = transform.position + Vector3.right * -horizontalInput * Time.deltaTime * speed;

Rotate all animals on the Y axis by 180 degrees to face down/ towards the player
Select all three animals in the hierarchy and Add Component > Move Forward
Edit their speed values and test to see how it looks
Drag all three animals into the Prefabs folder, choosing “Original Prefab”
Test by dragging prefabs into scene view during gameplay

Create “DestroyOutOfBounds” script and apply it to the projectile
Add a new private float topBound variable and initialize it = 30;
Write code to destroy if out of top bounds if (transform.position.z > topBound) {
Destroy(gameObject); }
In the Inspector Overrides drop-down, click Apply all to apply it to prefab

Create else-if statement to check if objects are beneath lowerBound: else if
(transform.position.z < lowerBound)
Apply the script to all of the animals, then Override the prefabs

 // Clamp the desired position within the x range
 float clampedX = Mathf.Clamp(desiredPosition.x, -xRange, xRange);
 desiredPosition = new Vector3(clampedX, desiredPosition.y, desiredPosition.z);
 // Move the object to the clamped position
 transform.position = desiredPosition;
 if (Input.GetKeyDown(KeyCode.Space))
 {
 // shoot pizza
 Instantiate(ProjectilePrefab, transform.position, ProjectilePrefab.transform.rotation);
 }
 }
}

5.Make animals into prefabs

6.Destroy projectiles offscreen

7. Destroy animals offscreen

8.Lesson Recap

New Functionality
The player can press the Spacebar to launch a projectile prefab,

Projectile and Animals are removed from the scene if they leave the screen

New Concepts & Skills
Create Prefabs
Override Prefabs
Test for Key presses
Instantiate objects
Destroy objects
Else-if statements

Next Lesson

Instead of dropping all these animal prefabs onto the scene, we’ll create a herd of animals
roaming the plain!

(

Lesson 2.2 - Food Flight
Skills practiced:
Absolute Beginner Code Comprehension
Interpret simple code
Improve simple code using the features of an IDE
Absolute Beginner Application Scripting
Use common logic structures to control the execution of code.
Write code that utilizes the various Unity APIs
Implement appropriate data types
Write code that integrates into an existing system
Implement a code style that is efficient and easy to read
Prototype new concepts
)

In the Hierarchy, create an Empty object called “SpawnManager”
Create a new script called “SpawnManager”, attach it to the Spawn Manager, and open
it
Declare new public GameObject[] animalPrefabs;
In the Inspector, change the Array size to match your animal count, then assign your
animals by dragging them from the Project window into the empty slots Note: Make sure
you drag them from the Project window; not the Hierarchy! If you're going to spawn
objects, you need to make sure you're using Prefabs, which are stored in the Project
window.

In Update(), write an if-then statement to instantiate a new animal prefab at the top of
the screen if S is pressed
Declare a new public int animalIndex and incorporate it in the Instantiate call, then
test editing the value in the Inspector

In the if-statement checking if S is pressed, generate a random int animalIndex between
0 and the length of the array
Remove the global animalIndex variable, since it is only needed locally in the if-
statement

Replace the X value for the Vector3 with Random.Range(-20, 20), then test
Within the if-statement, make a new local Vector3 spawnPos variable
At the top of the class, create private float variables for spawnRangeX and
spawnPosZ

5. Change the perspective of the camera

Random Animal Stampeed
1. Create a spawn manager

2. Spawn an animal if S is pressed

3. Spawn random animals from an array

4. Randomize the spawn location

Toggle between Perspective and Isometric view in the Scene view to appreciate the
difference
Select the camera and change the Projection from “Perspective” to “Orthographic”

6. Lesson Recap

New Functionality

The player can press the S to spawn an animal
Animal selection and spawn location are randomized
Camera projection (perspective/orthographic) selected

New Concepts & Skills

Spawn Manager
Arrays
Keycodes
Random generation
Local vs Global variables
Perspective vs Isometric projections

Next Lesson

Using collisions to feed our animals!

In SpawnManager.cs, create a new void SpawnRandomAnimal() {} function beneath
Update()
Cut and paste the code from the if-then statement to the new function
Call SpawnRandomAnimal(); if S is pressed

In Start(), use InvokeRepeating to spawn the animals based on an interval, then test.
Remove the if-then statement that tests for S being pressed
Declare new private startDelay and spawnInterval variables then playtest and tweak
variable values

Double-click on one of the animal prefabs, then Add Component > Box Collider
Click Edit Collider, then drag the collider handles to encompass the object
Check the “Is Trigger” checkbox
Repeat this process for each of the animals and the projectile

Collision Decisions + GAME
OVER
1. Make a new method to spawn
animals

2. Spawn the animals at timed
intervals

3. Add collider and trigger
components

Add a RigidBody component to the projectile and uncheck “use gravity”

Create a new DetectCollisions.cs script, add it to each animal prefab, then open it
Before the final } add an OnTriggerEnter function using autocomplete
In OnTriggerEnter, put Destroy(gameObject);, then test
In OnTriggerEnter, put Destroy(other.gameObject);

In DestroyOutOfBounds.cs, in the else-if condition that checks if the animals reach the
bottom of the screen, add a Game Over messsage: Debug.Log(“Game Over!”)
Clean up your code with comments
If using Visual Studio, Click Edit > Advanced > Format document to fix any indentation
issues (On a Mac, click Edit > Format > Format Document)

New Functionality
Animals spawn on a timed interval and walk down the screen
When animals get past the player, it triggers a “Game Over” message
If a projectile collides with an animal, both objects are removed

New Concepts & Skills
Create custom methods/functions
InvokeRepeating() to repeat code
Colliders and Triggers
Override functions
Log Debug messages to console

Pizza_gun

using UnityEngine;

public class Pizza_gun : MonoBehaviour
{

4. Destroy objects on collision

5. Trigger a “Game Over” message

6. Lesson Recap

Spawn_manager

 [SerializeField]
 public float Weapon_Bullet_Projectile_Speed = 60.0f;
 [SerializeField]
 private float topBound = -60;

 // Update is called once per frame
 void Update()
 {
 transform.Translate(Vector3.forward * Time.deltaTime * Weapon_Bullet_Projectile_Speed);

 if (transform.position.z < topBound)
 {
 Destroy(gameObject);
 }

 }
 private void OnTriggerEnter(Collider other)
 {
 Destroy(gameObject);
 Destroy(other.gameObject);
 }
}

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class SpawnManager : MonoBehaviour
{
 public GameObject[] animalPrefabs = new GameObject[10];
 [SerializeField]
 private float spawnRangeX = 20.0f;
 [SerializeField]
 private float spawnPozY = -20.0f;
 [SerializeField]
 private float startDelay = 5f;
 [SerializeField]
 private float spawnInterval = 2f;
 // Start is called before the first frame update

 void Start()
 {
 // invoke repeating, will make the method or void def function with name "nameInQuotes"
 // it will call that function after , delay, then chozen interval
 InvokeRepeating("SpawnRandomAnimal", startDelay, spawnInterval);
 }

 // Update is called once per frame
 void Update()
 {
 if (Input.GetKeyDown(KeyCode.S))
 {
 SpawnRandomAnimal();
 }
 }
 void SpawnRandomAnimal()
 {
 // Select a random index within the array range
 int random_animal_Index = Random.Range(0, animalPrefabs.Length);
 Vector3 spawnPos = new Vector3(Random.Range(-spawnRangeX, spawnRangeX), spawnPozY, -
30);
 // Instantiate the selected animalPrefab
 Instantiate(animalPrefabs[random_animal_Index], spawnPos,
 animalPrefabs[random_animal_Index].transform.rotation);
 }
}

movement

using UnityEngine;

public class Movement : MonoBehaviour
{
 [SerializeField]
 private float speed = 10.0f;
 [SerializeField]
 private float xRange = 10.0f;
 [SerializeField]
 private float horizontalInput;
 [SerializeField]

Animal Movement

 public GameObject ProjectilePrefab;
 // Start is called before the first frame update
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {

 horizontalInput = Input.GetAxis("Horizontal");
 // Calculate the desired position based on the input
 Vector3 desiredPosition = transform.position + Vector3.right * -horizontalInput * Time.deltaTime
* speed;
 // Clamp the desired position within the x range
 float clampedX = Mathf.Clamp(desiredPosition.x, -xRange, xRange);
 desiredPosition = new Vector3(clampedX, desiredPosition.y, desiredPosition.z);
 // Move the object to the clamped position
 transform.position = desiredPosition;
 if (Input.GetKeyDown(KeyCode.Space))
 {
 // shoot pizza
 Instantiate(ProjectilePrefab, transform.position, ProjectilePrefab.transform.rotation);
 }
 }
}

using UnityEngine;

public class AnimalMovement : MonoBehaviour
{

 public float Animal_Movement_Speed = 50.0f;
 public float lowerBound = 50;
 // Start is called before the first frame update
 void Start()

 {

 }

 // Update is called once per frame
 void Update()
 {
 transform.Translate(Vector3.forward * Time.deltaTime * Animal_Movement_Speed);
 if (transform.position.z > lowerBound)
 {
 Destroy(gameObject);
 Debug.Log("In the vernacular of your people... \n Game Over!");
 }
 }
}

