[FORGOTTEN]
DataStructs

Preface

Im just kinda taking notes and taking the slides from a yt vid so i can maybe remember stuff / copy
stuff for later

also to partially increase my typing speed without looking at my keyboard and idk maybe get
better at typing given i dont use the standerd asdf jkl; hand position

rather i do shift+awr jop' layout and use alot of range for my index fingers and spread them out its
not optimal but this is realy all i need coz im a gamer Imfao

also [] is my ring finger and all numbers are my ring fingers wish i had an ergo keyboard lol

Example page, and literal first 6 minutes of the video

Why Data Structures?

e They are essential Ingredients in creeating fast and powerfull algorithms.
e they help to manage and organize data.
e they make code cleaner and easier to understand. (even if it lowers efficiency)

Abstract Data Types VS. Data Structures

Abstract data type

An abstract data type (ADT) is an abstraction of a data structure which provides only the interface
to which a data structure must adhere to which a data structure must adhere to.

the interface does not give any specific details about how something should be implemented or in
what programming language.

Examples
Abstraction (ADT) Implementation (DS)
List Dinamic Array Linked List
Queue Linked List based Queue

Array based Queue
Stack based Queue

https://www.youtube.com/watch?v=RBSGKlAvoiM&ab_channel=freeCodeCamp.org

Map Tree Map

Hash Map / Hash Table

Vehicle Golf Cart
Bicycle
Smart Car

Complexity Analysis
As programmers, we often find ourselves asking the same two questions over and over again:

1. How much time does this algorithm need to finish?
1. if it takes the length of the universe to complete its useless

2. How much space does this algorithm need for its computation?
1. likewise if it takes the entire bit size of internet its also useless

Big-O Notation

yes it's the letter O not the number 0
Big-O Notation gives an upper bound of the complexity in the worst case, helping to quantify

performance as the input size becomes arbitrarily large.

Ex, looking for the number 7 in a list, and it occurring last. this scenario would include all values in
that list, if allocating space per number, you'd allocate the entire list.

n - The size of the input
Complexities ordered in from smallest to largest

Constant Time: 0O(1)
Logarithmic Time: = O(log(n))

Linear Time: O(n)
Linearithmic Time: O((n)log(n))
Quadratic Time: 0O(n"2)
Cubic Time: O(n"3)
Exponential time: O(b”n), b >1

Factorial Time: O(n!)

Big-O Properties

Q
=)
+
o
I

Qo
2

*c = constant, n = number
if your constant is large, like 2 billion its likely to have substantial run-time penalties

Big-O Examples

let f be a function that describes the running time of a particular algorithm for an input of size n:

f(n) = 7log(n)~3 + 15(n)"~3 + 15n"2 + 8

this is Quadratic because there's ~3 then ~2 then ~1 or a regular value at the end

O(f(n)) = O(n3)

The following run in constant time: O(1)

a: =1 i:=0
b:=2 While i < 11 do
c:=a+ 5% i=i+1

= is used to explicitly signal the initialization or assignment of a new value to a variable. and is usually used for pseudo
code

additionally since c can be run in a single cycle and the while loop is always the same it will always run 11 times,

The Following runs in Linear time: O(n)

:0 :0
While i < n Do While i < n Do

i=i+1 i=i+3

f(n) =n f(n) =n/3
O(f(n)) = O(n) 0(f(n)) = O(n)

since i + 1is 1/3 the speed of i + 3 we finish in appx 1/3 the time, regardless it will allways finish at
a constant rate, if we were to plot it on a graph its a straight line.

Both of the following run in Quadratic time the first may be obvious since n work done n times is
n*n = O(n"2), but what about the second one?

--still pseudo code but more lua like coz end = end of loop
for(i:=0;i<n;i=i+1)

for(j:=0;j<n;j=j+1)

end
end

f(n) = n*n =n"2, O(f(n)) = O(n™2)

for(i:=0;i<n;ji=i+1)
for(j:=i;j<n;j=j+1)

............ ~ replaced 0 with i

end

encase you didn't understand the pseudo code. like how i didn't... they are declaring what i is in the for loop, then declaring
the condition of the for loop if i < n then giving the condition once the loop ends. eg in python

n =10 # Example value for n
foriin range(n): # i goes from 0 to n-1.iis implicity declaired as 0 unless previously stated. (it hasnt)
forjin range(n): # j goes from O to n-j. again implicitly declairing the value of j

pass # replace with whatever ud do after the math.

n =10 # Example value forn

def foo():
global i, j, exitcond
while not exitcond:
ifi <n:
j=
while j < n:

whatever code would go after the for j loop

else:
exitcond = True

print("This is now exiting the exit condition if loop.")

Initial values
i=0
i=0

exitcond = False

foo()

for a moment focus on the second loop....
Since i goes from [0,n) the ammount of looping done is directly determined by what i is.
Remark that if i =0, we do n work, we do n-2 work, etc...

so the question then becomes what is:
n+M-1)+Mn2)+(n-3_+..+3+2+17?7
Remarkabley this turns out to be n(n+1)/2, so

O(n(n+1)/2 = 0(((n™2) /2) + n/2 = (0(n2)

for(i:=0:i<n;i=i+1)
for(j:=i;j<nj=j+1)

Suppose we have a sorted array and we want t ofind the index of a particular value in the array if it
exists. waht is the time complexity of the following algorithm?

heres a binary search

low :=0
high := n-1
while low <= high Do

mid := (low + high) /2

if array [mid] == value: return mid
else if array [mid] < value: lo = mid + 1
else if array [mid] > value: hi = mid - 1

return -1 //value not found

ans: 0(log_2(n)) = 0(log(n))

it starts by making 2 pointers one at the start one at the end

then checks if the value we are looking for was found at the midpoint, then has either found it or not, if it has found it it
stops. otherwise it discards one half of the array, and ajusts either the high or the low pointer. remark that even in the worst
case, we're still discarding half of the array, each each iteration. So very, very quickly ,we're going to run out of a range
check. so if you do the math, the worst case is you will need to do exactly log base 2 of N iterations, meaning that the
binary search will run in logarithmic time. V cool V powerful algorithm.

(go to 14 mins 16 secs future me who needs to write and read all this again :/

since

