module introduction

Module introduction

Welcome back. You've learned about the basics of computing with binary and the hardware layer
of the computer architecture. Now, it's time to move on to the next layer, the operating system. By
the end of this lesson, you'll know what an operating system is, and what makes up an operating
system. You also get some hands-on experience with the three biggest operating systems used
today. Before we get deeper into operating systems, I'd like to introduce myself to you. My name is
Cindy Gouache and I'm a Site Reliability Engineer at Google. The team | work on is responsible for
the management and support of Google's entire internal mobile fleet. Android OS, 10S, and Chrome
0OS. Before focusing on mobile, | was a systems administrator on the Linux team. Before that, | was
an Operations Engineer. But like a lot of the Googlers you've met and will meet, | started my career
as an IT support specialist. I've been working in IT for seven years now. The first time | can
remember interacting with computers was in middle school when my teacher brought them into
our classroom so we could create fun video and multimedia projects. It was my brother who
brought technology into our house. My parents were immigrants from Vietnam and we didn't have
a lot of money growing up. We had to be creative if we wanted to play with a computer at home. |
can remember spending hours with my brother as he assembled a computer and | will just ask a
million questions. Eventually, | wanted to try and build my own computer, so | gathered up some
old parts and save money to buy new components. | finally put all the parts together from what |
remembered my brother doing, but it just didn't work. It turns out that | use some incompatible
parts. But through a lot of trial and error, troubleshooting, and long search sessions on the Internet,
| finally got it to work. The feeling | got when | heard my computer boot up for the first time was
amazing. Before | knew it, | also worked on computers. | really enjoyed the intense concentration
and problem-solving required in IT. But | didn't think a career in tech was even possible back then.
Once | got to college, | had to find a job to help pay for tuition and that job was an IT support
specialist on campus. That's when | realized that take is actually something | could pursue as a
career. Operating systems aren't essential part of IT support. Everyone uses their computer to
accomplish something. Whether that's browsing the web, writing a novel, making graphics, playing
video games, etc. Whatever the case may be, they need to interact with their operating system to
do it. IT support, it's essential to understand how operating systems work, so you can help
someone accomplish the task they set out to do. Whether that's figuring out why an application
won't start, why the graphics look funny on their video games or anything else. Things can get
really messy and challenging, and that's part of the fun. Let's begin.

Components of an Operating
System

A lot of us hear the term operating system and think of the interfaces of our desktops and phones,
like the menus, buttons and backgrounds. Technically these are part of the operating system but
it's a little more complex than that. An operating system is the whole package that manages our
computers resources and lets us interact with it. There are two main parts to an operating system,
the kernel and the user space. The kernel is the main core of an operating system. It talks directly
to our hardware and manages our system's resources. As users we don't interact with the kernel
directly. Instead, we interact with the second part of an operating system, the user space. The
user space is basically made up of everything outside the kernel. These are things that we interact
with directly like system programs, user interfaces, etcetera. When we say operating system,
we're talking about both the kernel and the user space. There are hundreds of operating systems
out there, but we'll focus on the major ones used in IT, Windows, Mac and Linux. Windows OS is
developed by Microsoft and used widely in the business and consumer space. Most pcs you buy
come with Windows as the default operating system. PC means personal computer, which
technically means a computer that one person uses. But in today's world, PC is more commonly
referred to as a Windows computer. So we'll just referred to a PC as a Windows computer from
here. Mac OS by Apple is mainly used in the consumer space. If you buy an Apple computer, it'll
come with Mac OS preloaded. The last operating system will dive into as the Linux operating
system. Linux is an open source operating system which means its software is free to share,
modify and distribute. Linux is used heavily in business infrastructure and in the consumer space.
Linux itself is actually a kernel developed by Linus Torvalds. Because of the way it evolved, we call
the kernel the Linux operating system. Today, Linux has become a huge community effort with
developers all over the world contributing to its success. Because Linux is open source lots of
different organizations package their own version of it. Operating systems like Windows or
Macintosh, on the other hand, are solely developed by the respective companies. We call these
different Linux OSs distributions. Some common Linux distributions are ubuntu, debian and red
hat. Another operating system that has started to gain popularity is chrome OS but we won't go
into detail on that one. Mobile phone usage around the world is more prevalent than desktop
computers. One cool thing to call out is that chrome OS and android OS both run the Linux kernel
underneath the hood. So there's a chance you've already worked with Linux and didn't even know
it. There are lots of operating systems out there and they all share common characteristics. If
you're able to understand the basic building blocks of one OS, you can apply that to any operating
system and understand how it works. In IT support It's super common to work with many different
operating systems, desktop OSs, to smartphone OSs and more. Before we get there let's do a
rundown of the basics. The kernel does file storage and file management. You can compare it to a
physical office file where we store data in paper form.

A computer file is just data that we store and a file can be anything, a word document, a picture of
song, literally anything. A file system is how we manage these files, just like in an office we use a
system to store our files. We don't just put all our files in one cabinet that would be seriously
messy. Instead we organize those files in folders or directories to make them easier to find. There
are lots of different types of file systems which will cover more in depth in future videos. Another
important function of the kernel is process management. We have many programs that we want to
run on our system. To run them we manage the order they run in, how many resources they take
up, how long they run etcetera. Our kernel helps us do this with its process management
capabilities. For example, you've probably used your computer to do several tasks at once.
Maybe you writing a text document while listening to music or playing a video. The process
scheduler is part of the kernel that makes this multitasking possible. It switches the execution of
each different process on the CPU faster than you can blink and it gives you the illusion that
things are happening simultaneously. Next up is memory management. Our kernel optimizes
memory usage and make sure our applications have enough memory to run. The last important
function that a kernel performs is input, output or 10 management. This is how our kernel talks to
external devices, like disks, keyboards, networks, connections, audio devices and more. 10
management is anything that can give us input or that we can use for output of data. If you've
ever saved a file to disk, click the mouse button or used a microphone when video chatting with a
friend, you've got the kernel's ability to manage 10 to think. And that's the basic rundown of the
main functions of the kernel file management, process management, memory management and IO
management. Finally, we'll talk about the other component of an operating system, the user
space. The user space is everything outside the kernel. These are the things that we interact with
directly, like programs such as text editors, music players, system settings, user interfaces,
etcetera. By the end of this module, you'll hopefully have a solid understanding of all these
functions of an operating system. Let's start by taking a deeper dive into the kernel's file
management

Supplemental Reading for
Chrome OS

Another operating system that has started to gain popularity

is Chrome OS, which you can read about in more detail here.

bro also check out Vanilla os

one of the most user friendly linux distros, it started as an ubuntu flavor but is becoming its own
thing using the debian base, kindof link how ubuntu does.

also it uses containers of linux to run native code for any os. say u want to use aur programs, use
that, u want rhel apps? gotchu running that nativly. o regular flatpacs? YES PLEASE

PS: Chromebook keyboards suck so bad that its legit the only reason i refuse to use them. BUT u
can now install it on any os :D

Heads up: A big part of being successful in an IT role is the ability to be a self-led learner --
someone who finds key resources and reads up on the latest tech trends and solutions. The
supplemental readings we’ve provided have been designed to show you just some of the support
materials available to you online; they’re not meant to be considered a comprehensive list.

https://en.wikipedia.org/wiki/Chrome_OS

File Systems

Imagine if you had to store a single file in a cabinet. That sounds so bad. What if instead of one file
you had to store 100,000? Can you see a problem here? Well, on our computers we can easily store
hundreds of thousands of files, if not more, problem-solved. Not quite. We have to be able to keep
track of all these files. The kernel handles file storage and file systems on our machines. In this
lesson, we're going to dig a little deeper on how it does that. There are three main components to
handling files handlers, the file data, metadata, and file system. Let's start with the file system.
Well, we have a brand new hard disks that we want to store data on. We need to erase and
configure the disk. This way operating system can read and write data to it. This is important since
it's how our operating system keeps tracks of files. We must know what kind of file system is used.
There are lots of file systems and are used for different purposes. Some file systems support the
storage of large amounts of data others only support small amounts. They can operate in different
speeds and have varying resiliency towards file corruption and so on. We won't get into which file
system is best. That's for you to decide. But the major OS manufacturers have their own unique file
systems that they recommend, for Windows, the major file system that's used is NTFS. It was
introduced in the previous version of Windows OS, Windows NT, and includes many features like
encryption, faster access speeds, security, and more. Microsoft is developing another file system
called ReFS, but it isn't quite ready for consumer use just yet. For Linux, different distributions will
use different file system types. A standard for file systems for Linux is EX T4, which is compatible
with older EXT file systems. In general, different file system types don't play nicely with each other.
You might not be able to easily move files across different file systems depending on the file
system type. A good guideline to use is just to use the file system that your operating system
recommends. Another important part of file management is the storage of actual file data. We
write data to our hard drive in the form of data blocks. When we say something to our hard disks, it
doesn't always sit in one piece. It can be broken down into many pieces and written to different
parts of the disk. Block storage improves faster handling of data, because the data isn't stored on
one long piece, and it can be accessed quicker. It's also better for utilizing storage space. Lastly,
we need to keep the metadata that contains the information about our file. There's a lot of
information about our file that we want to know, who created it, when it was last modified, who has
access to it, and so on. The file metadata tells us everything we need to know about our file. It also
tells us what type of file it is. A file extension is the appended part of a filename that tells us what
type of file it is in certain operating systems. Take cool _image.jpg. JPG is a file extension associated
with image files. You'll see different types of file extensions like this. When you're working with
your operating system, your working knowledge of file systems and the differences between them
is a great skill to have in your IT support specialist toolbox. It can be super useful when you need to
do things like recovered data from damaged discs or explore ways to boot from two different kinds
of operating systems, like Windows and Linux on the same computer.

Supplemental Reading for ReFS
File System

Microsoft is currently developing another filesystem called

ReFS, it isn’t quite ready for consumer use, but if you're

interested in learning more you can read more about here.

Heads up: A big part of being successful in an IT role is the ability to be a self-led learner --
someone who finds key resources and reads up on the latest tech trends and solutions. The
supplemental readings we’ve provided have been designed to show you just some of the support
materials available to you online; they’re not meant to be considered a comprehensive list. Feel
free to add to the conversation by posting other useful resources for learners to the discussion

forum.

https://en.wikipedia.org/wiki/ReFS

Process Management

One of the most important tasks that our kernel performs is process management. A process is a
program that's executing, like our Internet browser or text editor. A program is an application that
we can run, like Chrome. Take note of the difference. We can have many processes of the same
program running at the same time. Think of how many Chrome windows you can open. These are
all different processes for the same program. When we want to run our programs, we have to
dedicate computer resources to them, like RAM and CPU. We only have a finite amount of
resources, and we want to be able to run multiple programs. Our kernel has to manage our
resources efficiently so that all the programs we want to use can be run. Our kernel doesn't just
dedicate all of our computers resources to one process. Our system is actually constantly running
multiple processes that are necessary for it to function. Our kernel has to worry about all of these
processes at once. What a program wants to run, a process needs to be created for it. This process
needs to have hardware resources like RAM and CPU. The kernel has to schedule time for the CPU
to execute the instructions in the process, but there's only one CPU and many processes. How is
the CPU able to execute multiple processes at once? It actually doesn't. It executes processes one-
by-one through something known as a time slice. A time slice is a very short interval of time that
gets allocated to a process for CPU execution. It's so short that you don't even notice it. It's super
short. The CPU executes one process in milliseconds, then executes another process, then another.
To the human eye, everything looks like it runs simultaneously. That's how fast the CPU works. If
your computer is running slowly, and your CPU resources are being maxed out, there can be many
factors at play. It's possible that one process is taking up more time slices than it should. This
means that the next process can't be executed. Another possibility is that there are too many
processes that want CPU time and the CPU can't keep up with them. Whatever the case may be,
even though the kernel does its best to manage processes for us, we might need to step in
manually from time-to-time. The kernel creates processes, efficiently schedules them, and
manages how processes are terminated. This is important since we need a way to collect all the
previously used resources that active processes were taking up and reallocate them to another
process.

Memory Management and
Virtual Memory

Remember that when a process runs, it needs CPU time, but it also needs memory. When
processes are run, they have to take up space in memory, so that the computer can read and load
them quickly. However, compared to our hard disk drives, memory comes in smaller quantities. So
to give us more memory than we physically have, we use something called virtual memory. Virtual
memory is the combination of hard drive space and RAM that acts like memory that our processes
can use. When we execute a process, we take the data of the program in chunks we call pages. We
store these pages in virtual memory. If we want to read and execute these pages, they have to be
sent to physical memory or RAM. Why don't we just store the entire program in RAM so we can
execute it quickly? Well you could, if it was small enough, but for large applications it would be
wasteful. Have you ever worked in a word processor and then gone to a menu don't normally use
and noticed the application slow down a little? It's because your computer had to load the page for
that menu from virtual memory into RAM. We don't use all the features of our application at once.
So why load it up at once? It's similar to cooking a recipe from a cookbook. You don't need to read
the whole book just to make one recipe. You only need to read the pages of the recipe you're
currently using. When we store our virtual memory on our hard drive, we call the allocated space
swap space. When we get into practical applications of disk partitioning, we'll allocate space for
swap. The kernel takes care of all of this for us of course. It handles the process of taking pages of
data and swapping them between RAM and virtual memory. But, the colonel isn't the only hard
worker around. You've done great getting through the lessons so far. Nice work.

/O Management

So far we've learned how hard our kernel works by handling files, managing file storage, juggling
all the different processes running on our computer, and allocating memory. Another important
task that our kernel handles is managing input and output. We refer to devices that perform input
and output as I/O devices. These include our monitors, keyboards, mice, hard disk drives, speakers,
Luther's headsets, webcams and network adapters. These I/O devices are all managed by our
kernel, the kernel needs to be able to load up drivers that are used so that we can recognize and
speak to these different types of hardware. When the kernel is able to start the drivers to
communicate with hardware, it also manages the transfer of data in and out of the devices. I/O
doesn't just mean the transfer of data between us and our devices. The devices also need to be
able to talk to each other. Our kernel handles all the inter communication between devices. It also
figures out what the most efficient method of transfer is and it tries its best to make sure our data
doesn't have errors during process. When you're troubleshooting or solving a problem with a slow
machine it's usually some sort of hardware resource deficiency. If you don't have enough RAM you
can't load up as many processes. If you don't have enough CPU you can't execute programs fast
enough. If you have too much input coming into the device or too much output going somewhere
you'll also block other data from being sent or received. It's slow is one of the most common
problems you'll solve in an IT support role. Knowing the potential sources of that slowness is a big
help when you're trying to narrow down the cause of the latency. Troubleshooting is such an
important part of any IT support role. Beyond desktop support, identifying the source of a resource
bottleneck and a server or large IT system like a Web application can unlock performance gains
and new heights of responsiveness for your users.

Interacting with the OS: User
Space

We've covered the kernel's major responsibilities. Now, let's discuss the final major aspect of an
operating system, how humans interact with it. This is what we call the userspace. When we
interact with an operating system, we want to do certain functions like creating files and folders,
open applications, and deleting items, you get the idea. There are two ways that we can interact
with our OS. With a shell or graphical user interface. There are also some shells that use graphical
user interfaces, but we'll work with a Command Line Interface or CLI shell. For the most part, this
just means that we'll use text commands. A Graphical User Interface or GUI is a visual way to
interact with the computer. We use our mouse to click and drag, to open folders, etc. We can see
everything we do with it. You probably use a GUI every day without realizing you're using one. To
watch this video, you probably used GUI clicking icons and navigating menus to open your web
browser and navigate to the website. People usually recognize a device or product based on its
GUI. You might be able to spot the difference between a computer running Microsoft Windows or
Mac OS based on the design of the windows, menus, and icons, you've probably seen GUI's and
other places too, like mobile phones and tablets, ATM machines, and airport kiosks. A shell is
basically a program that interprets text commands and sends them to the OS to execute. Before
we had fancy visual interfaces, commands like create a file had to be typed out. While we have GUI
is today, the shell is still commonly used to run commands, especially by power users. Power users
are above average computer users. Linux, especially, it's essential that you actually know
commands, not just a GUI. This is because most of them Linux machines you interact with in IT
support will be accessed remotely. Most of the time, you won't be given a GUI. There are lots of
different types of shelves. Some have different features, some handled performance differently. It's
the same concept behind different operating systems. For our purposes, we'll just be using the
most common shell, Bash or bourne. Again, shell in Linux, you might be thinking, but it's easier for
me to navigate a GUI than it is to use commands to do the same thing. Why would | want to learn
both? | can't stress this enough. It's vital for you to know how to use a shell in an IT support role.
Some tests can only be completed through commands. In more advanced IT roles, you might have
to manage thousands of machines. You don't want to have to click a button or drag a window on
every machine when you can just run a command once.

Logs

Imagine this scenario. You're playing your favorite video game and you finally get to the big boss.
You spent countless hours finding this boss, neglecting all other responsibilities, like your job,
school, even hygiene. That's pretty gross, but | get it. So you're right about to kill the big boss
when suddenly your game console shuts off completely. You probably freak out for a second. But
then you remember it's okay, you saved the game before the boss came along. So now you can
turn it back on and you'll be at the same spot. But then your console shuts off again. This happens
over and over. You like most people are devastated. You into a fit of rage, but then just before you
toss your console out, you make one last dish effort and yell, tell me what's wrong with you.
Suddenly you hear a faint voice telling you what you want to hear. Wouldn't that be amazing? Sure,
that scenario was a bit exaggerated. But my point is that our computers actually can talk to us and
tell us what's wrong. Maybe they won't whisper answers to us, but they speak to us in the form of
logs. Logs or files that record system events on our computer, just like a system's diary. A
computer will record events like when it was turned on, when a driver was loaded. And even when
something isn't working in the form of error messages. In all operating systems, logs are kept so
we can refer back to them when we need to find out something that happened. But logs can be
hard to navigate because our computer will essentially record everything. Here's what a log looks
like. As you can see, it can be tough to make your way through a log. But with a little bit of elbow
grease, we can figure out what happened on our computer and piece together a solution.
Unfortunately, our computers, cars and machines don't have a little voice that tells us what's
wrong when there's a problem. But by the end of this program, you'll be able to navigate and read
logs so you won't even need it.

magine this scenario. You're playing your favorite video game and you finally get to the big boss.
You spent countless hours finding this boss, neglecting all other responsibilities, like your job,
school, even hygiene. That's pretty gross, but | get it. So you're right about to kill the big boss
when suddenly your game console shu: Added to Selection. Press [CTRL + S] to save as a note
(Required)

en

The Boot Process

In this lesson, we're going to learn how our operating system starts up. As an IT support
specialist, you'll probably work on lots of computers that won't start. It's important to know the
steps and operating system takes, so you can help diagnose the issue. Booting a computer or
starting a computer comes from the phrase to pull oneself up by one's bootstraps. Basically, it
means to start from nothing and follow a series of steps to arrive at a fully operational system.
When we start up with computer, will use the term boot. For most operating systems, the boot
process follows a general pattern, much like how we have different cars startup in the same way.
Put in the key, turn on the ignition, etc. Here's a rundown of the boot process. First, the computer
is powered on. The BIOS/UEFI is a low-level software that initializes our computer's hardware to
make sure everything is good to go. Next, the bios UEFI runs a process called the power-on self-
test, or post. The post performs a series of diagnostic tests to make sure that the computer is in
proper working order. Next, depending on the bios or UEFI configuration of boot device will be
selected. Devices that are attached to our system, like hard drives, USB drives, CD drives, etc,
are configured in a certain boot order. The devices will be checked in this order and the computer
will search for what's known as a bootloader. The bootloader is a small program that loads the
operating system. Once our computer finds a bootloader on a device in the listed order, it will
start to execute this program. This will then start to load a larger and more complex program and
eventually loads our operating system. Once the bootloader loads up our operating system, our
kernel gets loaded. The kernel controls access to our computer's resources. It also loads up
drivers and more so that our hardware can talk to our software. Next, essential system processes
and user space items are launched. These include processes like user login, spinning up a
desktop environment, and more which basically allows us to interact with our system. And that's
it. After these simple steps, you'll be able to get to work.

English

Help Us
Translate

Boot Methods

While the most common way to boot a computer is to simply push the power button and allow the
normal process to run, there are many other boot options. This reading covers the various methods
you can use to boot a computer.

Internal method

You can create partitions on the computer’s drive so that only one part of the drive runs the boot
process. A common reason to partition your drive is to have two separate operating systems on
your computer, such as both Windows and Linux. When you have two operating systems on your
drive, you must choose which one will run the boot process. Having two possible systems to boot
into is called dual booting.

While having two operating systems can be helpful for various reasons, it is especially helpful when
one system is failing or unable to boot. If this happens, you can still boot the computer using the
other system and troubleshoot from there.

External tools

External tools can be used to boot the computer. You can load the needed resources on an
external tool to boot a system before any problems happen.

External bootable devices include:

USB drive: You use a USB drive loaded with resources needed to boot the computer.
This drive is inserted into a USB port and chosen at startup.

Optical Media: You use a disk loaded with booting resources. This disk can be a DVD,
CD, or Blu-ray disk and is loaded through the computer's optical drive.

Solid State Boot Drive: You use a solid state drive to boot. Solid state drives do not use
spinning discs or moving parts. This solid state drive can be installed in your computer or
can be a smaller device such as a flash drive.

External hot-swappable drive: You boot from an external hard drive that can be moved
between computers without turning it off.

Network boot: You boot the operating system directly from a local area network (LAN)
without using a storage device. Your computer must be connected to a LAN for this
option.

Internet-based boot: You boot the computer from an internet source, as long as itis a
secure source. Your computer must be connected to the internet for this option.

Window OS or Linux OS

In order to boot either Windows OS or Linux OS with an external tool, you'll need to enter BIOS at
startup by pressing F2/F12/Del keys. From there you can change the boot order so that the first
option is the external tool you want to use.

macOS

If booting macOS, press and hold the Option key at startup. This will open up the Startup Manager,
which will scan your computer and identify bootable devices. Then you can choose the bootable
device you want to use.

Key Takeaways

There are multiple ways to boot a computer.

A computer can be partitioned into different operating systems and you can select which
OS to use when booting.

You can boot from an external tool. External tools include USB drives, optical media,
solid state boot drives, external hot-swappable drives, network booting, and internet-
based booting.

Choosing a boot method on startup varies depending on which operating system you
use.

Boot Methods Best Practices

The most common way to boot a computer is to simply push the power button and allow the normal
startup process to run. But what happens if the normal startup process becomes corrupted and the
computer will not boot? Or maybe you would like to run a computer on a different operating system
than the one specified by your normal boot process. For situations like these, you have several
options for booting your operating system. This reading covers the various methods you can use to
boot a computer.

The boot process

When your computer is powered on, the BIOS/UEFI (BIOS) runs a series of diagnostic tests to
make sure that the computer is in proper working order. The BIOS is a low-level software that
initializes a computer's hardware to make sure everything is good to go. A boot device is selected
based on a boot order that is configured in the BIOS. Devices that are attached to your system, like
hard drives, USB drives, and CD drives are checked in this configured boot order and the computer
searches these devices for a small program called a “bootloader.” Once your computer finds a
bootloader on a device, it executes this program. The bootloader program then initiates a process
that loads the specific operating system setup that you want to use.

You can choose a computer’s boot method by telling the BIOS on which device to search for the
bootloader. If you want to run an OS setup that’s stored on a USB drive, you can configure the boot
order in your computer’s BIOS to search for a bootloader on a USB drive first.

Configuring boot options

Boot order is the order in which a computer chooses which boot files to use to startup. The boot
order determines your boot method. To set the boot order for a computer, you need to enter the
BIOS and configure the boot options.

To enter your computer’s BIOS on a Windows or Linux computer, power on the system and look for
an on-screen message that says which function key you should press to enter setup. The function
keys used for entering the BIOS vary between computer manufacturers and the version of BIOS.
Some of the more common function key messages are "Press DEL to enter SETUP," "F2=SETUP,"
or "Press F12 to enter SETUP." If booting macOS, press and hold the Option key at startup. This
will open up the Startup Manager, which will scan your computer and identify bootable devices.
Then you can choose the bootable device you want to use.

If you press the specified function key during the Windows or Linux power up process (before the
OS begins to load), you will open your BIOS program. A BIOS screen will look similar to this:

Image of a BIOS screen featuring the boot options menu.

The BIOS screen will vary depending on your computer manufacturer and BIOS version, but all
BIOS programs will feature a Boot Options menu. The Boot Options menu is where you can set
your preferred boot method.

The boot options menu lists all the devices attached to your system where it may find a bootloader
program. These include devices like internal hard drives, USB drives, CD drives, as well as other
storage options, like network storage or cloud storage. In the BIOS boot options menu you can set
the specific order you want to search these devices for the bootloader that will load your OS setup.
The BIOS will run the first bootloader that it finds.

Boot method options

You may find the following boot methods listed in your BIOS boot options:

External options

USB drive: You use a USB drive loaded with resources needed to boot the computer.
This drive is inserted into a USB port and chosen at startup.

Optical Media: You use an optical media disk loaded with booting resources. This disk
can be a DVD, CD, or Blu-ray disk and is loaded through the computer's optical drive.

The USB drive and optical media methods are useful for recovering a computer with a corrupted
OS. They can also be used to start up a computer with a different OS. For example, you might boot
a Windows computer in a Linux environment by using a USB with Linux OS. You will need to

prepare these media with a bootable OS in order to use them as a boot method (see resources
linked below).

Solid State Boot Drive: You can use a solid state drive to boot your computer. Solid
state drives do not use spinning discs or moving parts. This solid state drive can be
installed in the computer or can be a smaller device such as a flash drive.

External hot-swappable drive: You may boot from an external hard drive that can be
moved between computers without turning it off.

Network boot: You can boot an operating system directly from a local area network
(LAN) without using a storage device. Your computer must be connected to a LAN for
this option. The network boot is used when the computer does not have an OS installed,
among other things. To boot from a network, you will need to set up the Preboot
Execution Environment (PXE) capability on the BIOS and have the network environment
prepared for this type of request (see resources linked below).

Internet-based boot: You boot the computer from an internet source, as long as itis a
secure source. If you are in charge of a network and your server is down for any reason,
you can use this boot method to remotely power on the server and restart network
operations. Internet-based boot can be achieved in one of two ways:

Remote access. Remote Access Controller (IPMI or similar) has to be enabled on the
BIOS and the computer needs to have a Remote access control device, such as IDRAC
(see resources linked below).

Wake on LAN (WoL). This process requires the WoL option enabled on the BIOS (see
resources linked below). The WoL instruction should come from a device in the network
or use a WolL gateway, and the network card should have WoL capability.

Internal options

Disk partitions: You can create partitions on your computer’s drive so that only one part of the
drive runs the boot process. A common reason to partition your drive is to have two separate
operating systems on your computer. For example, you could have Windows on one partition of
your drive and Linux on the other. When you have two operating systems on your drive, you must
choose which one will run the boot process. Having two possible systems to boot into is called dual
booting.

While having two operating systems can be helpful for various reasons, it is especially helpful when
one system is failing or unable to boot. If this happens, you can still boot the computer using the
other system and troubleshoot from there.

Key Takeaways

There are multiple ways to boot a computer.

A computer can be partitioned into different operating systems and you can select which
OS to use when booting.

You can boot from an external tool. External tools include USB drives, optical media,
solid state boot drives, external hot-swappable drives, network booting, and internet-
based booting.

Choosing a boot method on startup varies depending on which operating system you
use.

Resource Links:

How to make a bootable CD/DVD/USB to install windows

How to build your own bootable Linux Live CD

Create a bootable installer for macOS

What is preboot execution environment (PXE)?

How to set up PXE boot for UEFI hardware

Installing and configuring the RAC software

How to enable and use Wake on LAN (WoL) on Windows 10

https://www.makeuseof.com/tag/make-bootable-usb-cd-dvd-install-windows-using-iso-file/
https://www.makeuseof.com/tag/build-bootable-linux-live-cd/
https://support.apple.com/en-us/HT201372
https://www.techtarget.com/searchnetworking/definition/Preboot-Execution-Environment
https://www.redhat.com/sysadmin/pxe-boot-uefi
https://cs.uwaterloo.ca/~brecht/servers/docs/PowerEdge-2600/en/ERA/rac34c6.htm
https://www.windowscentral.com/how-enable-and-use-wake-lan-wol-windows-10

Mobile Operating Systems

Some mobile devices are general-purpose computing devices like tablets or smartphones. Other
mobile devices like fitness monitors, e-readers, and smartwatches, are designed to do a smaller set
of tasks. General-purpose mobile devices generally use a mobile operating system that's derived
from other operating systems. For example Android is derived from Linux and iOS shares a lot of
core components with MacOS. So how are mobile operating systems different from the OSs that
they're based on? Mobile devices run on batteries that have to be recharged or replaced on a
regular basis and you want the device to last as long as possible between charges. So mobile
operating systems are optimized to use as little power as possible, for example, by removing OS
features and applications that the mobile device doesn't need. We also use motion, touch, and
voice to interact with mobile devices in very different ways from desktop or server computers. This
requires adding device drivers and support to the mobile operating system. More specialized
mobile devices like fitness trackers, e-readers, and GPS devices, often use custom OSs that are
optimized for what the device is designed to do. These devices are even more slimmed down to run
on very minimal hardware with very minimal battery power. They might also be built using
specialized chips and peripherals, which more general-purpose operating systems don't know how
to run on.

Cindy: Drive and career path

I'd say when | first started | thought there were two jobs you could do, you could be a sys admin or
you could be IT support. But that's completely false. There's like a huge amount of opportunity in
IT. You could be specialized in networks. You could be specialized in databases or like reliability
engineering. I'd say it doesn't matter if you're a guy a girl an alien ideas for everyone. It's just
problem solving with technology and anyone can do it. | know people who are in IT that degrees in
liberal arts or like cooking and all these other things. People come from IT from all sorts of
backgrounds. I've always drive to be different. And for me | think that was just learning skills like
growing up girls didn't use computers. | was like Igirl relly use a computer? Girls didn't know how to
drive manual cars. I'm going to go learn how to drive a manual car. They don't know how to ride
motorcycles. | can do that too. And | enjoy learning | enjoy learning a lot of things. | enjoy picking
up new skills. Technology is a real equalizer for people who don't have the current educational like
background. You can load up a website. All these learning websites. There's so much information
on the Internet and | think that technology really equalizes that for people who want to get into
certain careers. They want to learn something. | think what's available now is amazing and I think |
wish I'd had that ten years ago when | started.

I'd say when | first started | thought there were two jobs you could do, you could be a sys admin or
you could be IT support. But that's completely false. There's like a huge amount of opportunity in
IT. You could be specialized in networks. You could be specialized in databases or like reliability
engineering. I'd say it doesn't matter if you're a guy a girl an alien ideas for everyone. It's just
problem solving with technology and anyone can do it. | know people who are in IT that degrees in
liberal arts or like cooking and all these other things. People come from IT from all sorts of
backgrounds. I've always drive to be different. And for me | think that was just learning skills like
growing up girls didn't use computers. | was like Igirl relly use a computer? Girls didn't know how to
drive manual cars. I'm going to go learn how to drive a manual car. They don't know how to ride
motorcycles. | can do that too. And | enjoy learning | enjoy learning a lot of things. | enjoy picking
up new skills. Technology is a real equalizer for people who don't have the current educational like
background. You can load up a website. All these learning websites. There's so much information
on the Internet and | think that technology really equalizes that for people who want to get into
certain careers. They want to learn something. | think what's available now is amazing and I think |
wish I'd had that ten years ago when | started.

