
Module Introduction
How software is built: Coding, scripting, and programming
Common Scripting Solutions
Scripting Languages
Types of Software
Supplemental Reading for Software Versioning
Revisiting Abstracting
Recipe for Computing
Phelan: Learning IT in the Navy

Introduction to
Software



Hi. My name is Phelan Vendeville, and I'm a Systems Engineer in the Site Reliability Organization at
Google. I'm really excited to be your instructor for the next few lessons. Before we jump in, I'll kick
things off by telling you a little bit about myself. My passion for technology began in high school
which was located in a geographically isolated part of California. This isolation meant that
technology and the Internet played an important role in bringing the outside world to students and
connecting them with ideas and opportunities by things like virtual field trips and remote learning.
For example, I remember preparing for the SATs through digital classroom sessions, which would
have been impossible to attend in person. After high school, I enlisted in the US Navy as an
Information Systems Technician responsible for maintaining computer and network systems. I
continued to witness the ways technology brings people together, whether that meant coordinating
ship movements during training exercises or connecting loved ones on long deployments via video
chat. Lots of people use technologies in various ways every day, but relatively few understand how
it works. A career in IT can be challenging, as I can attest to personally. I can still remember the
horror I felt after blowing up the power supply of a master chief's computer by using the wrong
voltage switch. But a career in IT can be incredibly rewarding when you can do things like recover
irreplaceable family photos from a failing hard-drive. As an IT support specialist, you'll be in a
position to not only know how a given piece of technology functions, but also how to help fix it
when it breaks. This means you'll have a direct impact on the flow of information going between
people. Which is pretty cool. I'm excited to teach you about the third layer of computer
architecture, known as software. Software is how we, as users directly interact with our computer.
The operating system that we interact with is just software. The music programs, word processors,
and more that we use every day are also software. But what exactly is it? If the hardware is the
physical stuff that you can pick up and hold, software is the intangible instructions that tell the
hardware what to do. In the next lesson, we're going to deep dive more into what software is, how
we install it, and how it works.

Module Introduction



Video games, music players, and Internet browsers are all different types of software that have
completely different functions. Think of the apps on your phone and your laptop. We spent a lot of
time interacting with this type of software, but we may not know how it actually works or gets
added to our systems. In the last few videos, we learned about networking in the internet. There
are tons of applications out there that require the Internet to work. Think about it. Your social
media apps, messaging apps, and others run off the Internet. This Internet integration isn't just
magically added to your application, it's built-in to require it to function. Before we go too far into
the world of software, I want to call out some common terms related to software that you might
hear. Coding, scripting, and programming are all terms that might seem a little blurry. They
generally refer to the same thing, but they each have small distinctions. Coding is basically
translating one language to another. This can be coding from English to Spanish, English to Morse
code, or even English to a computer language. When someone builds an application, we refer to it
as coding in application. Scripting is coding in a scripting language. We'll talk about scripting
languages in a later lesson, but scripts are mainly used to perform a single or limited-range task.
There are languages we can use to build these. Programming is coding in a programming
language. Programming languages are special languages that software developers use to write
instructions for computers to execute. Larger applications like your web browser, text editors, and
music players, are all usually written in programming languages. When we use the term software,
it generally refers to something that was programmed. We use these terms interchangeably, so
don't sweat the details. Now, onwards and upwards. What is software made of and who builds it?
It's a great question. Anyone who knows a programming or scripting language can use it to write
code. There's a huge demand for this skill set and it's becoming easier for someone to learn to
code. If you're going to be working in IT, it's important that you understand how software works
and how it gets installed on your systems. You might encounter software errors or just good old-
fashioned failures, and you need to understand how to deal with them.

How software is built:
Coding, scripting, and
programming



In this reading, you will learn about a variety of scripting languages, their uses, and their risks. As 

an IT Support professional, you may need to automate routine tasks. For example, you might want 

to automate a backup of company data that runs every night. You might also need to automate 

high volume tasks, like changing security access settings on thousands of files. Scripting is a 

common tool used for automation. This tool can help IT Support staff save time and resources in a 

busy enterprise work environment.   

There are many scripting languages available to use for a variety of tasks in different operating 

system environments. Most scripts are written in command line environments.

Scripting languages for Windows environments:

PowerShell (.ps1) - Windows PowerShell is among the most common command line 

scripting tools used in Windows environments. PowerShell is built on the .NET platform 

and employs many of the same elements that programming languages do. PowerShell 

scripts are used for building, testing, and deploying solutions, in addition to automating 

system management.

Batch scripts (.bat) - Batch scripts, also called batch files, have been around since the 

early days of MS DOS and OS/2. Batch files can execute simple tasks, like calling a set 

of programs to run when a computer boots up. This type of script could be useful in 

setting up employees’ workspaces when they power on their computers. 

Visual Basic Script (.vbs) - Visual Basic Script is an older scripting language. It has 

reached its end of life for Microsoft support and has been replaced by PowerShell 

scripts. However, as an IT professional, you may encounter .vbs scripts on some legacy 

systems.

Common Scripting Solutions

Scripting languages



Scripting languages for Linux and Unix environments:

Shell script (.sh) - Shell scripting languages, like Bash, are used in Unix or Linux 

environments. The scripts are often used to manipulate files, including changing file 

security settings, creating, copying, editing, renaming and deleting files. They can also 

be used to execute programs, print, navigate the operating system, and much more. The 

scripts run in command-line interpreter (CLI) shells, such as the Bourne shell, Bourne 

Again SHell (Bash), C shell, and Korn (KSH) shell. 

Programming languages that can be used for scripting: 

JavaScript (.js) - JavaScript the most used programming language in the world. It is a 

lightweight language that is used for scripting in web development, mobile and web apps, 

games, and more. It can also be used to develop software and automate web server 

functions. 

Python (.py) - Python is a user-friendly programming language that can perform 

advanced tasks and import modules from libraries specially designed for automation 

scripts. 

Basic automation: Python is an excellent script for automation. It’s one of the most 

commonly used, with many available automation libraries.

Scripting uses - finding the right tool for the job



Restarting machines: Many power users use PowerShell (.ps1) scripts to restart 

machines (Windows). For Linux machines, they can use .sh (shell) scripts.

Mapping network drives: In the past, mapping network drives was accomplished with 

.bat or .vbs scripts. However, PowerShell scripts are most commonly used to map drives 

in Windows environments today. For Linux users, shell scripts can be used for this 

purpose.

Installing applications: Batch files and shell scripts are often used for automated 

software installation.

Automated Backups: Windows PowerShell and Linux/Unix shell scripts can automate 

backups.

Gathering of information and data: Python is a popular choice for gathering data. 

Python has many available libraries to help with this task.

Initiating Updates: Powershell and shell scripts can be used for initiating updates in 

Windows and Linux, respectively.

IT Support professionals need to be very careful when using scripts, especially with prewritten 

scripts copied or downloaded from the internet. Some of the security risks of using scripts could 

include:

Security risks of using scripts



Unintentionally introducing malware: As an IT Support professional  that is new to 

scripting, you may try to search the internet for assistance in writing scripts. In your 

search, you might find a script online for a task that you want to automate. It’s tempting 

to save time and effort by downloading the script and deploying it in your network 

environment. However, this is dangerous because scripts authored by an unverified 

source could potentially contain malware. Malicious scripts could have the power to 

delete files, corrupt data and software, steal confidential information, disable systems, 

and even bring down an entire network. Malicious scripts can create security 

weaknesses for the purpose of creating entry points for cybercriminals to penetrate 

networks. Scripts could also introduce ransomware attacks, which often works by 

encrypting file systems and then selling the decryption keys for ransom. 

Inadvertently changing system settings: Scripts are powerful tools for changing 

system settings. Using the wrong script can cause the user to inadvertently configure 

harmful settings. For example, one minor typo in a shell script that sets file permission 

security in Linux could make confidential files accessible to the world.  

Browser or system crashes due to mishandling of resources: Mishandling resources 

can lead to program crashes in the browser or cause the entire computer to crash. For 

example, directing too much memory to the browser can overload the computer system.

A basic knowledge of scripting is an important tool for IT professionals. You may need to improve 

workflow efficiency by automating basic functions with a scripting language. Some common 

scripting languages include:

Windows environments: batch scripts (.bat), Powershell (.ps1), Visual Basic Script (.vbs)

Key takeaways 



Linux/Unix environments: shell scripts (.sh)

Most OS environments: javascript (.js), Python (.py)

Scripts have multiple helpful uses, such as:

Basic Automation

Restarting Machines

Remapping Network Drives

Installing Applications

Automating Backups

Gathering of information/ data

Initiating Updates



There are risks in using scripts, including:

Unintentionally introducing malware

Inadvertently changing system settings

Browser or system crashes due to mishandling of resources

For more information about scripting languages, please visit:

https://library.naruzkurai.com/link/236#bkmrk-page-title

Resources for more information

https://www.indeed.com/career-advice/career-development/top-scripting-languages


Scripting languages allow a coding professional to create scripts that execute

tasks. Often, this is a useful method for automating tasks that don’t require

human interaction or interpretation so that you can reduce the workload of your

staff. If you're interested in a career as a coding professional, it can be

beneficial to learn about common and practical scripting languages.

In this article, we discuss what a scripting language is, share the difference

between scripting and programming languages, list 14 of the top scripting

languages and offer tips for learning how to script.

A scripting language is a coding language that offers a method of creating

commands that do not require compilation. Instead, the scripting language runs

through an interpreter that translates the script into actions. Scripting

languages often facilitate automation within an organization to increase

efficiency. Information that anyone enters in a scripting language executes

sequentially from the top of the code to the bottom, following any protocols of

the scripting language.

Scripting languages can fall into two broad categories:

Client-side: Client-side scripting languages focus on the parts of a website

or web application that the end user (or client) interacts with directly.

Scripting Languages

What is a scripting language?



Server-side: Server-side scripting languages interact directly with and run

on the server. These scripts are typically invisible to the end user.

If your career involves coding, it's important to understand how scripting

languages and programming languages differ. Although some use the two

terms interchangeably, there are important differences between the two,

including:

Compiled versus interpreted: One key difference between scripting and

programming languages is whether they're compiled or interpreted.

Programming languages are compiled, allowing the machine that's

accessing them to translate them directly with no intermediary interpreter.

Execution speed: Programming languages often provide faster execution

speeds for task completion than a scripting language. This occurs because

of the benefits of executing a compiled program and not relying on an

interpreter.

Purposes: The purposes of the two types of languages can overlap, but

there are also differences. Generally, professionals use programming

languages for a variety of applications, while they use scripting languages

mainly for web application development.

Simplicity: Although scripting allows a coder to complete tasks in many

situations, professionals often use it for simpler tasks. This can help make it

easier to learn than the average programming language.

What's the difference between scripting
and programming languages?



Amount of code: The simplicity of scripting languages can be beneficial

when seeking to create shorter pieces of code. Completed scripts are often

shorter than completed programs, allowing a coder to complete them more

quickly.

Portability: Because scripting languages rely on an interpreter and do not

need to be compiled prior to execution, they are often transferable across

multiple operating systems. Programming languages, conversely, often

require specific compilations for each operating system.

If you're interested in a career in coding, learning about these languages may

help:

JavaScript is one of the most common scripting languages. JavaScript is a

high-level, text-based scripting language that can operate on either the client

side or the server side. Web developers can use JavaScript, which works with

HTML and CSS, to add interactive elements to websites.

PHP is another popular scripting language. PHP stands for Hypertext

Preprocessor, which is a general-purpose, open-source scripting language.

While PHP has become less prominent in web design as new developers have

created new languages, many developers still use it because of its broad

application and strong security. 

14 scripting languages
(just learn python+c#+java)

1. JavaScript

2. PHP



Another widely used scripting language is Python, which professionals can use

for both scripting and programming. Because of its simple syntax, Python is

known for being relatively easy to learn and understand, making it ideal for

beginners. Some applications of Python include artificial intelligence, web

development, mobile application development and operating systems.

Perl is a general-purpose, back-end scripting language that professionals

frequently use to process text files, and they can also use it for web

development and database management. Perl shares many structural

similarities to programming in C languages. This can make it an excellent

option for transitioning to scripting languages.

Ruby is an object-oriented language known for its simple syntax. Developers

can use Ruby to create web applications, and the language is also useful for

data analysis and other purposes. It is a popular scripting language in the

professional world, making it a valuable option for an aspiring code

professional to learn.

Computer programmers can also create scripts with Bash, which is a Unix

command language. One of the most common uses of Bash is accessing files

and completing tasks through the command line. Because the syntax of Bash

is simple and intuitive, this scripting language is fairly easy to learn.

3. Python

4. Perl

5. Ruby

6. Bash

7. R



R is a scripting language that's especially popular in statistics and data

analysis. You can also use R to graph data, making this language popular with

data scientists, statisticians and other professionals who work with data. The R

language works in the R environment as well as in other development

environments and platforms.

Lua is an embeddable scripting language. It has a diverse range of

programming methods and applications, making it a versatile scripting

language to learn. Lua is a popular scripting choice for use in the development

of game engines, which allow video game developers to create systems in

which they can design their games.

Emacs Lisp is a scripting language originally designed for use with eMac

computers. Although eMac computers are no longer in production, the

language can still be a valuable learning aid because of its relationship with

other scripting languages. It is particularly relevant to coders with an interest in

working on Unix machines and with the command line.

Groovy is a scripting language with a syntax similar to Java. Greedy makes use

of a dot-separated notation and can carry out complex tasks when needed.

Professionals often use Groovy for web development projects, and it can

complete a range of tasks within a web design.

8. Lua

9. Emacs Lisp

10. Groovy

11. PowerShell



PowerShell is a command-line scripting language that can work with many

platforms. Although you may use it for other tasks, PowerShell primarily serves

to automate computer tasks. This frees up time for yourself or others in the

organization to work on other projects. 

VBA is a domain-specific scripting language and stands for Visual Basic for

Applications. Professionals primarily use it as a scripting addition to Microsoft

applications. For example, you may create a macro in Excel that completes

multiple tasks on a single button press, with VBA providing the scripting to

execute the actions.

GML is a scripting language for the Game Maker Studios line of development

software. Game Maker Studio is an engine for creating computer games that

combine both visual layout and scripting. Although developers do not require

scripting skills to use Game Maker Studio due to the inclusion of plug-and-play

buttons, learning to script in GML significantly expands your options when

creating a game in Game Maker Studios.

VBScript is a scripting language based on the Visual Basic suite of computer

programs. VBScript can create code for both online and client-side

implementation. Although VBScript has decreased in prominence in recent

years, it is a foundational scripting language for some developers.

12. VBA

13. GML

14. VBScript



 If you’re interested in learning a scripting language, these tips can help you do

so effectively:

Think about your goals. Consider what your intentions are as a coding

professional when choosing which scripting languages to learn. Adapting

your language studies to match those which align with your objectives can

make your study more effective.

Use online guides. When learning to code, online resources and courses

can be an excellent place to begin. Often, these courses are available for

free and provide a comprehensive understanding of the language and

potentially a certification or credentials as well.

Consider a formal education. Although a degree in computer science is

not a requirement when seeking to work as a coding professional, it may still

be beneficial. Earning a degree may be useful when applying to coding

positions, and it allows you to gain a high-quality education from a college or

university. 

Practice your scripting skills. Practical learning is an effective way to learn

a new scripting language for most coding professionals. By writing practice

programs, you learn how to apply your scripting knowledge, and the process

of troubleshooting can help you further strengthen your understanding of the

language and how it works.

Search when you are stuck. If you encounter a problem during your

scripting and you do not know the solution, online resources may ?help.

Most scripting languages have active communities with a simple search for

your problem, providing you with links to multiple articles or forum posts

discussing the issue which you may ?apply to fix your script.

Tips for learning scripting languages

https://www.indeed.com/career-advice/interviewing/vb-script-interview-question




When you write content, create a piece of art, or engineer something, your work is protected for
your use and distribution. There's usually some other caveats depending on the laws in your
country. But in general, copyright is used when creating original work. Software that's written is
also protected by copyright. Software developers can choose what they do with their software. For
commercial software, it's common to let someone else use their software if they pay for a license.
For non-commercial software, a popular option is making it open source. This means that
developers will let other developers share, modify, and distribute their software for free. Score,
some amazing software efforts have been developed and advanced because of open source. One
major example is the Linux kernel, which is used in the Android OS, and in enterprise and personal
computers. Hundreds of millions of devices are running Linux at this very second. LibreOffice,
GIMP, and Firefox are other examples of open-source software. Open-source projects are usually
contributed by developers who work on the project for free in their free time. These massive
software development efforts were essentially built by a community of volunteers. How great is
that? In an IT environment, you'll have to pay special attention to the types of software you use.
Some may require you to pay multiple licenses to use it, others might be free and open source. It's
important to check the license agreement of any software before you install it. We've talked about
some of the basics of software, but now let's shift to the two types of software you'll encounter
categorized by function. Application software is any software created to fulfill a specific need, like a
text editor, web browser, or graphic editor. System software is software used to keep our core
system running, like operating system tools and utilities. There's also a type of system software
that we haven't defined yet called firmware. Firmware is software that's permanently stored on a
computer component. Can you think of a firmware that we've talked about already? If you thought
of the BIOS, you're right. The BIOS helps start up the hardware on your computer, and also helps
load up your operating system, so it's important that it's in a permanent location. I should also call
out software versions. These are important because they tell us what features were added to a
specific software iteration. You'll encounter lots of software versions while you work with software.
Developers might sometimes use a different standard when distinguishing a version, but in
general, the majority of versions follow a sequential numbering trend. You might see something
like this, 1.2.5 or 1.3.4. Which of these do you think is the newer version? It's 1.3.4 because it's a
larger number than 1.2.5. You can read more about software versioning in the supplemental
reading. You'll have to work with all kinds of software. Fortunately, it basically all works the same
way. Once you learn how one piece of software works, you'll understand how others might
function.

Types of Software



Heads up: A big part of being successful in an IT role is the ability to be a self-led learner -- 

someone who finds key resources and reads up on the latest tech trends and solutions. The 

supplemental readings we’ve provided have been designed to show you just some of the support 

materials available to you online; they’re not meant to be considered a comprehensive list. Feel 

free to add to the conversation by posting other useful resources for learners to this forum thread. 

Supplemental Reading for
Software Versioning
For more information about software versioning, click here. 
(its wikipedia :D)

https://www.coursera.org/learn/technical-support-fundamentals/discussions/weeks/5/threads/3Ud6so60Ee2-ahKXxFFB4w
https://en.wikipedia.org/wiki/Software_versioning


Earlier in this course, we talked about how programs are instructions that are given to a CPU. We
can send binary code or bits to our CPU, then they'll use an instruction set to run those commands.
But these CPUS might be from different manufacturers and may have different instructions. There
might even be all kinds of different hardware components like video cards and hard drives that also
have their own special interfaces. So how do we write a program that the hardware can
understand? Well, one way would be to write a program for each possible combination of CPU and
hardware using the native languages and interfaces of these components, but there are potentially
millions of possible configurations of hardware. So how do we get anything to work with all this
complex and diverse hardware? Well, thanks to the efforts of computer scientists and the principle
of abstraction, we can now use programming languages to write instructions that can be run on
any hardware.

Revisiting Abstracting



Remember that in the 1950s, computer scientists used punch cards to store programs. These
punch cards represented bits that the CPU would read and then perform a series of instructions
based on what the program was. The binary code could have looked like this, and the instructions
will be translated to this, grab some input data from this location in memory. Using the input data,
do some math, then put some output data into this location in memory. But storing programs on
punch cards was a long and tedious task. The programs had to be kept on stacks and stacks of
punch cards. Computer scientists needed a better way to send instructions to a machine, but how?
Eventually a language was invented called assembly language, that allowed computer scientists to
use human readable instructions assembled into code that the machines could understand. Instead
of generating binary code, computer scientists could program using machine instructions like this.
Take integer from register 1, take integer from register 2, add integer from register 1 and register
2 and output to register 4. This example makes it look like a human could read it, but don't be
fooled. Let's take an example of saying something simple like, hello world in assembly language. It
looks pretty robotic, don't get me wrong that's still an improvement over its binary code cousin.
But assembly language was still a thin veil from machine code. It's still didn't let computer
programmers use real human words to build a program, and a program that was written for a
specific CPU could only be run on that CPU or family of CPUs. A program was needed that could run
on many types of CPUs, enter compiled programming languages. A compiled programming
language uses human readable instructions and sends them through a compiler. The compiler
takes the human instructions and compiles them into machine instructions. Admiral Grace Hopper
invented this to help make programming easier. Compilers are a key component to programming
and helped pave the road that led us to today's modern computing. Thanks to compilers, we can
now use something like this, and it would be the same thing as this. Computer scientists have
developed hundreds of programming languages in the past couple of decades to try and abstract
the different CPU instructions into simpler commands. Along the way, another type of language
emerged that was interpreted rather than compiled, interpreted languages aren't compiled ahead-
of-time. A file that has code written in one of these languages is usually called a script. The script is
run by an interpreter which interprets the code into CPU instructions just in time to run them. You'll
learn how to write code using a scripting language later in this program as an IT support specialist,
scripting can help you by harnessing the power of a computer to perform tasks on your behalf,
allowing you to solve a problem once and then move on to the next thing. Programming languages
are used to create programs that can be run to perform a task or many tasks.

Recipe for Computing



 In high school, I wasn't really sure what I wanted to do yet, but when I joined the US Navy, one of
the options for job was an information systems technician. Information technology and the Navy
can be pretty exciting. You get to be very resourceful if you're out on a deployment in the desert.
Perhaps, you have to use the tools that you have at hand to get the job done. So I remember being
in a server room in a tent with the sand blowing in and we'd occasionally have to take out the
servers and then reverse the vacuum and blow the dust and sand out of the server to make sure
that they kept working. So obviously I can't go into too much specifics and details but in the Navy,
one of my favorite technology moments was when the command came down that we needed to do
this thing and I had to write a program to actually do it. And I've never written a program before.
And I was like, okay, I mean, I'll try. And so I did the research, I did the learning, I figured it out, I
wrote the program it ran, and it did the thing that I wanted it to do. And I was so satisfied. That was
an amazing experience. I made this thing from nothing and it actually performed the action that I
wanted it to, which was pretty cool.

Phelan: Learning IT in the
Navy


