Python functions In cybersecurity

Previously, you explored how to define and call your own functions. In this reading, you'll revisit
what you learned about functions and examine how functions can improve efficiency in a
cybersecurity setting.

Functions in cybersecurity

A function is a section of code that can be reused in a program. Functions are important in Python
because they allow you to automate repetitive parts of your code. In cybersecurity, you will likely
adopt some processes that you will often repeat.

When working with security logs, you will often encounter tasks that need to be repeated. For
example, if you were responsible for finding malicious login activity based on failed login attempts,
you might have to repeat the process for multiple logs.

To work around that, you could define a function that takes a log as its input and returns all
potentially malicious logins. It would be easy to apply this function to different logs.

Defining a function

In Python, you'll work with built-in functions and user-defined functions. Built-in functions are
functions that exist within Python and can be called directly. The print() function is an example of a
built-in function.

User-defined functions are functions that programmers design for their specific needs. To define
a function, you need to include a function header and the body of your function.

Function header

The function header is what tells Python that you are starting to define a function. For example, if
you want to define a function that displays an "investigate activity" message, you can include this
function header:



def display_investigation_message():

The def keyword is placed before a function name to define a function. In this case, the name of
that function is display_investigation_message.

The parentheses that follow the name of the function and the colon (:) at the end of the function
header are also essential parts of the syntax.

Pro tip: When naming a function, give it a name that indicates what it does. This will make it
easier to remember when calling it later.

Function body

The body of the function is an indented block of code after the function header that defines what
the function does. The indentation is very important when writing a function because it separates
the definition of a function from the rest of the code.

To add a body to your definition of the display_investigation_message() function, add an indented
line with the print() function. Your function definition becomes the following:

def display_investigation_message():

print("investigate activity")

Calling a function

After defining a function, you can use it as many times as needed in your code. Using a function
after defining it is referred to as calling a function. To call a function, write its name followed by
parentheses. So, for the function you previously defined, you can use the following code to call it:

display_investigation_message()

Although you'll use functions in more complex ways as you expand your understanding, the
following code provides an introduction to how the display investigation_message() function might
be part of a larger section of code. You can run it and analyze its output:

def display investigation message():

print("investigate activity")

application status = "potential concern"
email status = "okay"
if application_status == "potential concern":

print("application log:")

display investigation message()



if email status == "potential concern":
print("email log:")

display investigation message()

application log:
investigate activity

The display_investigation_message() function is used twice within the code. It will print "investigate
activity" messages about two different logs when the specified conditions evaluate to True. In this
example, only the first conditional statement evaluates to True, so the message prints once.

This code calls the function from within conditionals, but you might call a function from a variety of
locations within the code.

Note: Calling a function inside of the body of its function definition can create an infinite loop. This
happens when it is not combined with logic that stops the function call when certain conditions are
met. For example, in the following function definition, after you first call funcl(), it will continue to
call itself and create an infinite loop:

def funcl():

funcl()

Key takeaways

Python’s functions are important when writing code. To define your own functions, you need the
two essential components of the function header and the function body. After defining a function,
you can call it when needed.

Revision #1
Created 19 December 2023 06:26:39 by naruzkurai
Updated 27 December 2023 11:35:24 by naruzkurai



