
Previously, you explored conditional statements and how they’re useful in automating tasks in
Python. So far, you’ve focused on the if and else keywords. In this reading, you’ll review these and
learn another keyword, elif. You’ll also learn how you can apply the and, or, and not operators to
your conditions.

A conditional statement is a statement that evaluates code to determine whether it meets a
specific set of conditions. When a condition is met, it evaluates to a Boolean value of True and
performs specified actions. When the condition isn’t met, it evaluates a Boolean value of False and
doesn’t perform the specified actions.

In conditional statements, the condition is often based on a comparison of two values. This table
summarizes common comparison operators used to compare numerical values.

operator use

> greater than

< less than

>= greater than or equal to

<= less than or equal to

== equal to

!= not equal to

Note: The equal to (==) and not equal to (!=) operators are also commonly used to compare
string data.

More on conditionals in
Python

How conditional statements work



The keyword if starts a conditional statement. It’s a necessary component of any conditional
statement. In the following example, if begins a statement that tells Python to print an "OK"
message when the HTTP response status code equals 200:

if status == 200:

    print("OK")

This code consists of a header and a body.

The first line of this code is the header. In the header of an if statement, the keyword if is followed
by the condition. Here, the condition is that the status variable is equal to a value of 200. The
condition can be placed in parentheses:

if (status == 200):

    print("OK")

In cases like this one, placing parentheses around conditions in Python is optional. You might want
to include them if it helps you with code readability. However, this condition will be processed the
same way if written without parentheses. 

In other situations, because Python evaluates the conditions in parentheses first, parentheses can
affect how Python processes conditions. You will read more about one of these in the section of this
reading on not.

Note: You must always place a colon (:) at the end of the header. Without this syntax, the code will
produce an error.

The body of an if statement

After the header of an if statement comes the body of the if statement. This tells Python what
action or actions to perform when the condition evaluates to True. In this example, there is just one
action, printing "OK" to the screen. In other cases, there might be more lines of code with
additional actions.

Note: For the body of the if statement to execute as intended, it must be indented further than the
header. Additionally, if there are multiple lines of code within the body, they must all be indented
consistently. 

if statements

The header of an if statement



In the previous example, if the HTTP status response code was not equal to 200, the condition
would evaluate to False and Python would continue with the rest of the program. However, it’s also
possible to specify alternative actions with else and elif.

The keyword else precedes a code section that only evaluates when all conditions that precede it
within the conditional statement evaluate to False.

In the following example, when the HTTP response status code is not equal to 200, it prints an
alternative message of "check other status":

if status == 200:

    print("OK")

else:

    print("check other status")

Note: Like with if, a colon (:) is required after else, and the body that follows the else header is
indented.

In some cases, you might have multiple alternative actions that depend on new conditions. In that
case, you can use elif. The elif keyword precedes a condition that is only evaluated when previous
conditions evaluate to False. Unlike with else, there can be multiple elif statements following if.

For example, you might want to print one message if the HTTP response status code is 200, one
message if it is 400, and one if it is 500. The following code demonstrates how you can use elif for
this: 

if status == 200:

    print("OK")

elif status == 400:

Continuing conditionals with else
and elif

else statements

elif statements



    print("Bad Request")

elif status == 500:

    print("Internal Server Error") 

Python will first check if the value of status is 200, and if this evaluates to False, it will go onto the
first elif statement. There, it will check whether the value of status is 400. If that evaluates to True,
it will print "Bad Request", but if it evaluates to False, it will go on to the next elif statement. 

If you want the code to print another message when all conditions evaluate to False, then you can
incorporate else after the last elif. In this example, if it reaches the else statement, it prints a
message to check the status:

if status == 200:

    print("OK")

elif status == 400:

    print("Bad Request")

elif status == 500:

    print("Internal Server Error")

else:

    print("check other status")

Just like with if and else, it’s important to place a colon (:) after the elif header and indent the code
that follows this header.

Note: Python processes multiple elif statements differently than multiple if statements. When it
reaches an elif statement that evaluates to True, it won’t check the following elif statements. On
the other hand, Python will run all if statements.

In some cases, you might want Python to perform an action based on a more complex condition.
You might require two conditions to evaluate to True. Or, you might require only one of two
conditions to evaluate to True. Or, you might want Python to perform an action when a condition

Logical operators for multiple
conditions



evaluates to False. The operators and, or, and not can be used in these cases.

The and operator requires both conditions on either side of the operator to evaluate to True. For
example, all HTTP status response codes between 200 and 226 relate to successful responses. You
can use and to join a condition of being greater than or equal to 200 with another condition of
being less than or equal to 226:

if status >= 200 and status <= 226:

    print("successful response")

When both conditions are True, then the "successful response" message will print.

The or operator requires only one of the conditions on either side of the operator to evaluate to
True. For example, both a status code of 100 and a status code of 102 are informational responses.
Using or, you could ask Python to print an "informational response" message when the code is
either 100 or 102:

if status == 100 or status == 102:

    print("informational response")

Only one of these conditions needs to be met for Python to print the message.

The not operator negates a given condition so that it evaluates to False if the condition is True and
to True if it is False. For example, if you want to indicate that Python should check the status code
when it’s something outside of the successful range, you can use not:

if not(status >= 200 and status <= 226):

    print("check status")

Python first checks whether the value of status is greater than or equal to 200 and less than or
equal to 226, and then because of the operator not, it inverts this. This means it will print the
message if status is less than 200 or greater than 226.

and

or

not



Note: In this case, the parentheses are necessary for the code to apply not to both conditions.
Python will evaluate the conditions within the parentheses first. This means it will first evaluate the
conditions on either side of the and operator and then apply not to both of them.

It’s important for security analysts to be familiar with conditional statements. Conditional
statements require the if keyword. You can also use else and elif when working with conditionals to
specify additional actions to take. The logical operators and, or, and not are also useful when
writing conditionals.

Key takeaways

Revision #1
Created 9 December 2023 10:37:33 by naruzkurai
Updated 19 December 2023 03:38:35 by naruzkurai


