Lists and the security analyst

Previously, you examined how to use bracket notation to access and change elements in a list and
some fundamental methods for working with lists. This reading will review these concepts with new
examples, introduce the .index() method as it applies to lists, and highlight how lists are used in a
cybersecurity context.

List data In a security setting

As a security analyst, you'll frequently work with lists in Python. List data is a data structure that
consists of a collection of data in sequential form. You can use lists to store multiple elements in a
single variable. A single list can contain multiple data types.

In a cybersecurity context, lists might be used to store usernames, IP addresses, URLs, device IDs,
and data.

Placing data within a list allows you to work with it in a variety of ways. For example, you might
iterate through a list of device IDs using a for loop to perform the same actions for all items in the
list. You could incorporate a conditional statement to only perform these actions if the device IDs
meet certain conditions.

Working with indices in lists

Indices

Like strings, you can work with lists through their indices, and indices start at 0. In a list, an index is
assigned to every element in the list.

This table contains the index for each element in the list ["elarson", "fgarcia", "tshah", "sgilmore"]:

element index
"elarson" 0
"fgarcia" 1
"tshah" 2

"sgilmore" 3



Bracket notation

Similar to strings, you can use bracket notation to extract elements or slices in a list. To extract an
element from a list, after the list or the variable that contains a list, add square brackets that
contain the index of the element. The following example extracts the element with an index of 2
from the variable username_list and prints it. You can run this code to examine what it outputs:

username_list = ["elarson", "fgarcia", "tshah", "sgilmore"]

print(username_ list[2])

tshah

Extracting a slice from a list

Just like with strings, it's also possible to use bracket notation to take a slice from a list. With lists,
this means extracting more than one element from the list.

When you extract a slice from a list, the result is another list. This extracted list is called a sublist
because it is part of the original, larger list.

To extract a sublist using bracket notation, you need to include two indices. You can run the
following code that takes a slice from a list and explore the sublist it returns:

username_list = ["elarson", "fgarcia", "tshah", "sgilmore"]

print(username list[0:2])
['elarson', 'fgarcia'l]
The code returns a sublist of ["elarson", "fgarcia"]. This is because the element at index 0,

"elarson", is included in the slice, but the element at index 2, "tshah", is excluded. The slice ends
one element before this index.

Changing the elements in a list

Unlike strings, you can also use bracket notation to change elements in a list. This is because a
string is immutable and cannot be changed after it is created and assigned a value, but lists are
not immutable.



To change a list element, use similar syntax as you would use when reassigning a variable, but
place the specific element to change in bracket notation after the variable name. For example, the
following code changes element at index 1 of the username _list variable to "bmoreno".

username_list = ["elarson", "fgarcia", "tshah", "sgilmore"]

print("Before changing an element:", username list)

username_list[1l] = "bmoreno"

print("After changing an element:", username list)

Before changing an element: ['elarson', 'fgarcia', 'tshah', 'sgilmore']
After changing an element: ['elarson', 'bmoreno', 'tshah', 'sgilmore']

This code has updated the element at index 1 from "fgarcia" to "bmoreno".

List methods

List methods are functions that are specific to the list data type. These include the .insert() ,
.remove(), .append() and .index().

insert()

The .insert() method adds an element in a specific position inside a list. It has two parameters. The
first is the index where you will insert the new element, and the second is the element you want to
insert.

You can run the following code to explore how this method can be used to insert a new username
into a username list:

username_list = ["elarson", "bmoreno", "tshah", "sgilmore"]
print("Before inserting an element:", username list)
username_ list.insert(2,"wjaffrey")

print("After inserting an element:", username list)

Before inserting an element: ['elarson', 'bmoreno', 'tshah', 'sgilmore']
After inserting an element: ['elarson', 'bmoreno', 'wjaffrey', 'tshah', 'sgilmore']

Because the first parameter is 2 and the second parameter is "wjaffrey", "wjaffrey" is inserted at

index 2, which is the third position. The other list elements are shifted one position in the list. For
example, "tshah" was originally located at index 2 and now is located at index 3.

remove()



The .remove() method removes the first occurrence of a specific element in a list. It has only one
parameter, the element you want to remove.

The following code removes "elarson" from the username_list:

username_list = ["elarson", "bmoreno", "wjaffrey", "tshah", "sgilmore"]
print("Before removing an element:", username list)

username_list.remove("elarson")

print("After removing an element:", username_ list)
Before removing an element: ['elarson', 'bmoreno', 'wjaffrey', 'tshah', 'sgilmore']
After removing an element: ['bmoreno', 'wjaffrey', 'tshah', 'sgilmore']

This code removes "elarson" from the list. The elements that follow "elarson" are all shifted one
position closer to the beginning of the list.

Note: If there are two of the same element in a list, the .remove() method only removes the first
instance of that element and not all occurrences.

append()

The .append() method adds input to the end of a list. Its one parameter is the element you want to
add to the end of the list.

For example, you could use .append() to add "btang" to the end of the username_list:

username_list = ["bmoreno", "wjaffrey", "tshah", "sgilmore"]
print("Before appending an element:", username list)
username_list.append("btang")

print("After appending an element:", username_ list)

Before appending an element: ['bmoreno', 'wjaffrey', 'tshah', 'sgilmore']
After appending an element: ['bmoreno', 'wjaffrey', 'tshah', 'sgilmore', 'btang']

This code places "btang" at the end of the username_list, and all other elements remain in their
original positions.

The .append() method is often used with for loops to populate an empty list with elements. You can
explore how this works with the following code:

numbers list = []

print("Before appending a sequence of numbers:", numbers list)

for i in range(10):



numbers list.append(i)

print("After appending a sequence of numbers:", numbers list)

Before appending a sequence of numbers: []
After appending a sequence of numbers: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Before the for loop, the numbers_list variable does not contain any elements. When it is printed,
the empty list is displayed. Then, the for loop iterates through a sequence of numbers and uses the
.append() method to add each of these numbers to numbers_list. After the loop, when the
numbers_list variable is printed, it displays these numbers.

index()

Similar to the .index() method used for strings, the .index() method used for lists finds the first
occurrence of an element in a list and returns its index. It takes the element you're searching for as
an input.

Note: Although it has the same name and use as the .index() method used for strings, the .index()
method used for lists is not the same method. Methods are defined when defining a data type, and
because strings and lists are defined differently, the methods are also different.

Using the username_list variable, you can use the .index() method to find the index of the
username "tshah":

username _list = ["bmoreno", "wjaffrey", "tshah", "sgilmore", "btang"l]
username_index = username_ list.index("tshah")

print(username_index)

Because the index of "tshah" is 2, it outputs this number.

Similar to the .index() method used for strings, it only returns the index of the first occurrence of a
list item. So if the username "tshah" were repeated twice, it would return the index of the first
instance, and not the second.

Key takeaways

Python offers a lot of ways to work with lists. Bracket notation allows you to extract elements and
slices from lists and also to alter them. List methods allow you to alter lists in a variety of ways. The
.insert() and .append() methods add elements to lists while the .remove() method allows you to
remove them. The .index() method allows you to find the index of an element in a list.



Revision #2
Created 25 December 2023 10:42:45 by naruzkurai
Updated 27 December 2023 11:35:24 by naruzkurai



