Functions and variables

Previously, you focused on working with multiple parameters and arguments in functions and
returning information from functions. In this reading, you’ll review these concepts. You'll also be
introduced to a new concept: global and local variables.

Working with variables in functions

Working with variables in functions requires an understanding of both parameters and arguments.
The terms parameters and arguments have distinct uses when referring to variables in a function.
Additionally, if you want the function to return output, you should be familiar with return
statements.

Parameters

A parameter is an object that is included in a function definition for use in that function. When you
define a function, you create variables in the function header. They can then be used in the body of
the function. In this context, these variables are called parameters. For example, consider the
following function:

def remaining login_attempts(maximum_attempts, total attempts):
print(maximum_attempts - total attempts)

This function takes in two variables, maximum_attempts and total attempts and uses them to
perform a calculation. In this example, maximum_attempts and total attempts are parameters.

Arguments

In Python, an argument is the data brought into a function when it is called. When calling
remaining_login_attempts in the following example, the integers 3 and 2 are considered
arguments:

remaining login_attempts(3, 2)

These integers pass into the function through the parameters that were identified when defining
the function. In this case, those parameters would be maximum_attempts and total attempts. 3 is
in the first position, so it passes into maximum_attempts. Similarly, 2 is in the second position and



passes into total attempts.

Return statements

When defining functions in Python, you use return statements if you want the function to return
output. The return keyword is used to return information from a function.

The return keyword appears in front of the information that you want to return. In the following
example, it is before the calculation of how many login attempts remain:

def remaining login_attempts(maximum_attempts, total attempts):
return maximum_attempts - total_attempts
Note: The return keyword is not a function, so you should not place parentheses after it.

Return statements are useful when you want to store what a function returns inside of a variable to
use elsewhere in the code. For example, you might use this variable for calculations or within
conditional statements. In the following example, the information returned from the call to
remaining login_attempts is stored in a variable called remaining_attempts. Then, this variable is
used in a conditional that prints a "Your account is locked" message when remaining_attempts is
less than or equal to 0. You can run this code to explore its output:

def remaining_login_attempts(maximum_attempts, total_attempts):
return maximum_attempts - total_attempts

remaining_attempts = remaining_login_attempts(3, 3)

if remaining_attempts <= 0:

print("Your account is locked")

Your account is locked
In this example, the message prints because the calculation in the function results in 0.

Note: When Python encounters a return statement, it executes this statement and then exits the
function. If there are lines of code that follow the return statement within the function, they will not
be run. The previous example didn't contain any lines of code after the return statement, but this
might apply in other functions, such as one containing a conditional statement.

Global and local variables

To better understand how functions interact with variables, you should know the difference
between global and local variables.



When defining and calling functions, you're working with local variables, which are different from
the variables you define outside the scope of a function.

Global variables

A global variable is a variable that is available through the entire program. Global variables are
assigned outside of a function definition. Whenever that variable is called, whether inside or
outside a function, it will return the value it is assigned.

For example, you might assign the following variable at the beginning of your code:
device_id = "7ad2130bd"

Throughout the rest of your code, you will be able to access and modify the device_id variable in
conditionals, loops, functions, and other syntax.

Local variables

A local variable is a variable assigned within a function. These variables cannot be called or
accessed outside of the body of a function. Local variables include parameters as well as other
variables assigned within a function definition.
In the following function definition, total string and name are local variables:
def greet_employee(name):

total string = "Welcome" + name

return total_string

The variable total_string is a local variable because it's assigned inside of the function. The
parameter name is a local variable because it is also created when the function is defined.

Whenever you call a function, Python creates these variables temporarily while the function is
running and deletes them from memory after the function stops running.

This means that if you call the greet_ employee() function with an argument and then use the
total string variable outside of this function, you'll get an error.

Best practices for global and local
variables



When working with variables and functions, it is very important to make sure that you only use a
certain variable name once, even if one is defined globally and the other is defined locally.

When using global variables inside functions, functions can access the values of a global variable.
You can run the following example to explore this:

username = "elarson"
def identify_user():
print(username)

identify_user()

elarson

The code block returns "elarson" even though that name isn't defined locally. The function
accesses the global variable. If you wanted the identify_user() function to accommodate other
usernames, you would have to reassign the global username variable outside of the function. This
isn't good practice. A better way to pass different values into a function is to use a parameter
instead of a global variable.

There's something else to consider too. If you reuse the name of a global variable within a function,
it will create a new local variable with that name. In other words, there will be both a global
variable with that name and a local variable with that name, and they'll have different values. You
can consider the following code block:

username = "elarson"
print("1:" 4+ username)
def greet():
username = "bmoreno"
print("2:" + username)
greet()

print("3:" + username)

1:elarson
2:bmoreno
3:elarson

The first print statement occurs before the function, and Python returns the value of the global
username variable, "elarson". The second print statement is within the function, and it returns the
value of the local username variable, which is "bmoreno". But this doesn't change the value of the

global variable, and when username is printed a third time after the function call, it's still "elarson".

Due to this complexity, it's best to avoid combining global and local variables within functions.



Key takeaways

Working with variables in functions requires understanding various concepts. A parameter is an
object that is included in a function definition for use in that function, an argument is the data
brought into a function when it is called, and the return keyword is used to return information from
a function. Additionally, global variables are variables accessible throughout the program, and local
variables are parameters and variables assigned within a function that aren't usable outside of a
function. It's important to make sure your variables all have distinct names, even if one is a local
variable and the other is a global variable.

Revision #1
Created 21 December 2023 11:36:43 by naruzkurai
Updated 27 December 2023 11:35:24 by naruzkurai



