
Hash functions are important controls that are part of every company's security strategy. Hashing
is widely used for authentication and non-repudiation, the concept that the authenticity of
information can’t be denied.

Previously, you learned that hash functions are algorithms that produce a code that can't be
decrypted. Hash functions convert information into a unique value that can then be used to
determine its integrity. In this reading, you’ll learn about the origins of hash functions and how
they’ve changed over time.

The hashing algorithm process. A plaintext document is converted by a hash function into hashed text.

Hash functions have been around since the early days of computing. They were originally created
as a way to quickly search for data. Since the beginning, these algorithms have been designed to
represent data of any size as small, fixed-size values, or digests. Using a hash table, which is a data
structure that's used to store and reference hash values, these small values became a more secure
and efficient way for computers to reference data.

One of the earliest hash functions is Message Digest 5, more commonly known as MD5. Professor
Ronald Rivest of the Massachusetts Institute of Technology (MIT) developed MD5 in the early 1990s
as a way to verify that a file sent over a network matched its source file.

Whether it’s used to convert a single email or the source code of an application, MD5 works by
converting data into a 128-bit value. You might recall that a bit is the smallest unit of data
measurement on a computer. Bits can either be a 0 or 1. In a computer, bits represent user input in
a way that computers can interpret. In a hash table, this appears as a string of 32 characters.
Altering anything in the source file generates an entirely new hash value.

Generally, the longer the hash value, the more secure it is. It wasn’t long after MD5's creation that
security practitioners discovered 128-bit digests resulted in a major vulnerability.

Here is an example of how plaintext gets turned into hash values:

The evolution of hash
functions

Origins of hashing



Names being turned into hash values. The hash values are stored in random rows of a data table.

One of the flaws in MD5 happens to be a characteristic of all hash functions. Hash algorithms map
any input, regardless of its length, into a fixed-size value of letters and numbers. What’s the
problem with that? Although there are an infinite amount of possible inputs, there’s only a finite set
of available outputs!

MD5 values are limited to 32 characters in length. Due to the limited output size, the algorithm is
considered to be vulnerable to hash collision, an instance when different inputs produce the
same hash value. Because hashes are used for authentication, a hash collision is similar to copying
someone’s identity. Attackers can carry out collision attacks to fraudulently impersonate authentic
data.

To avoid the risk of hash collisions, functions that generated longer values were needed. MD5's
shortcomings gave way to a new group of functions known as the Secure Hashing Algorithms, or
SHAs.

The National Institute of Standards and Technology (NIST) approves each of these algorithms.
Numbers besides each SHA function indicate the size of its hash value in bits. Except for SHA-1,
which produces a 160-bit digest, these algorithms are considered to be collision-resistant.
However, that doesn’t make them invulnerable to other exploits.

Five functions make up the SHA family of algorithms:

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512

Passwords are typically stored in a database where they are mapped to a username. The server
receives a request for authentication that contains the credentials supplied by the user. It then

Hash collisions

Next-generation hashing

Secure password storage



looks up the username in the database and compares it with the password that was provided and
verifies that it matches before granting them access.

This is a safe system unless an attacker gains access to the user database. If passwords are stored
in plaintext, then an attacker can steal that information and use it to access company resources.
Hashing adds an additional layer of security. Because hash values can't be reversed, an attacker
would not be able to steal someone's login credentials if they managed to gain access to the
database.

A rainbow table is a file of pre-generated hash values and their associated plaintext. They’re like
dictionaries of weak passwords. Attackers capable of obtaining an organization’s password
database can use a rainbow table to compare them against all possible values.

Functions with larger digests are less vulnerable to collision and rainbow table attacks. But as
you’re learning, no security control is perfect.

Salting is an additional safeguard that's used to strengthen hash functions. A salt is a random
string of characters that's added to data before it's hashed. The additional characters produce a
more unique hash value, making salted data resilient to rainbow table attacks.

For example, a database containing passwords might have several hashed entries for the password
"password." If those passwords were all salted, each entry would be completely different. That
means an attacker using a rainbow table would be unable to find matching values for "password" in
the database.

User input entering a hash function. A random set of characters are added to the hashing process.

For this reason, salting has become increasingly common when storing passwords and other types
of sensitive data. The length and uniqueness of a salt is important. Similar to hash values, the
longer and more complex a salt is, the harder it is to crack.

Security professionals often use hashing as a tool to validate the integrity of program files,
documents, and other types of data. Another way it’s used is to reduce the chances of a data
breach. As you’ve learned, not all hashing functions provide the same level of protection. Rainbow
table attacks are more likely to work against algorithms that generate shorter keys, like MD5. Many

Rainbow tables

Adding some “salt”

Key takeaways



small- and medium-sized businesses still rely on MD5 to secure sensitive data. Knowing about
alternative algorithms and salting better prepares you to make impactful security
recommendations.

Revision #1
Created 26 July 2023 12:37:44 by naruzkurai
Updated 15 August 2023 18:44:12 by naruzkurai


