Prevent injection attacks;
SQL injection categories

Previously, you learned that Structured Query Language (SQL) is a programming language used
to create, interact with, and request information from a database. SQL is one of the most common

programming languages used to interact with databases because it is widely supported by a range
of database products.

As you might recall, malicious SQL injection is a type of attack that executes unexpected queries
on a database. Threat actors perform SQL injections to modify, delete, or steal information from
databases. A SQL injection is a common attack vector that is used to gain unauthorized access to
web applications. Due to the language's popularity with developers, SQL injections are regularly
listed in the OWASP® Top 10 because developers tend to focus on making their applications work
correctly rather than protecting their products from injection.

In this reading, you'll learn about SQL queries and how they are used to request information from a
database. You will also learn about the three classes of SQL injection attacks used to manipulate
vulnerable queries. You will also learn ways to identify when websites are vulnerable and ways to
address those gaps.

SQL queries

Every bit of information that’s accessed online is stored in a database. A database is an organized
collection of information or data in one place. A database can include data such as an
organization's employee directory or customer payment methods. In SQL, database information is
organized in tables. SQL is commonly used for retrieving, inserting, updating, or deleting
information in tables using queries.

A SQL query is a request for data from a database. For example, a SQL query can request data
from an organization's employee directory such as employee IDs, names, and job titles. A human
resources application can accept an input that queries a SQL table to filter the data and locate a
specific person. SQL injections can occur anywhere within a vulnerable application that can accept
a SQL query.

Queries are usually initiated in places where users can input information into an application or a
website via an input field. Input fields include features that accept text input such as login forms,
search bars, or comment submission boxes. A SQL injection occurs when an attacker exploits input



fields that aren't programmed to filter out unwanted text. SQL injections can be used to manipulate
databases, steal sensitive data, or even take control of vulnerable applications.

SQL injection categories

There are three main categories of SQL injection:

e In-band
e Out-of-band
e Inferential

In the following sections, you'll learn that each type describes how a SQL injection is initiated and
how it returns the results of the attack.

In-band SQL injection

In-band, or classic, SQL injection is the most common type. An in-band injection is one that uses
the same communication channel to launch the attack and gather the results.

For example, this might occur in the search box of a retailer's website that lets customers find
products to buy. If the search box is vulnerable to injection, an attacker could enter a malicious
query that would be executed in the database, causing it to return sensitive information like user
passwords. The data that's returned is displayed back in the search box where the attack was
initiated.

Out-of-band SQL injection

An out-of-band injection is one that uses a different communication channel to launch the attack
and gather the results.

For example, an attacker could use a malicious query to create a connection between a vulnerable
website and a database they control. This separate channel would allow them to bypass any
security controls that are in place on the website's server, allowing them to steal sensitive data

Note: Out-of-band injection attacks are very uncommon because they'll only work when certain
features are enabled on the target server.

Inferential SQL injection



Inferential SQL injection occurs when an attacker is unable to directly see the results of their
attack. Instead, they can interpret the results by analyzing the behavior of the system.

For example, an attacker might perform a SQL injection attack on the login form of a website that
causes the system to respond with an error message. Although sensitive data is not returned, the
attacker can figure out the database's structure based on the error. They can then use this
information to craft attacks that will give them access to sensitive data or to take control of the
system.

Injection Prevention

SQL queries are often programmed with the assumption that users will only input relevant
information. For example, a login form that expects users to input their email address assumes the
input will be formatted a certain way, such as jdoe@domain.com. Unfortunately, this isn’t always
the case.

A key to preventing SQL injection attacks is to escape user inputs—preventing someone from
inserting any code that a program isn't expecting.

There are several ways to escape user inputs:

e Prepared statements: a coding technique that executes SQL statements before passing
them on to a database
e Input sanitization: programming that removes user input which could be interpreted as

code.
e Input validation: programming that ensures user input meets a system's expectations.

Using a combination of these techniques can help prevent SQL injection attacks. In the security
field, you might need to work closely with application developers to address vulnerabilities that can

lead to SQL injections. OWASP's SQL injection detection techniques

is a useful resource if you're interested in investigating SQL injection vulnerabilities on your own.

Key takeaways

Many web applications retrieve data from databases using SQL, and injection attacks are quite
common due to the popularity of the language. As is the case with other kinds of injection attacks,
SQL injections are a result of unexpected user input. It's important to collaborate with app
developers to help prevent these kinds of attacks by sharing your understanding of SQL injection
techniques and the defenses that should be put in place.


https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection

Revision #2
Created 27 August 2023 14:09:08 by naruzkurai
Updated 27 August 2023 17:02:31 by naruzkurai



