1. Two Sum

Given an array of integers nums and an integer target, return indices of the two numbers such that
they add up to target .

You may assume that each input would have exactly one solution, and you may not use the
same element twice.

You can return the answer in any order.

Example 1:

Input: nums =[2,7,11,15], target = 9
Output: [0,1]
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].

Example 2:

Input: nums = [3,2,4], target = 6
Output: [1,2]

Example 3:

Input: nums = [3,3], target = 6
Output: [0,1]

Constraints:

e 2 <= nums.length <= 104

e -109 <= numsli] <= 10°

e -109 <= target <= 10°

e Only one valid answer exists.

here was my Engrish explanation of how i solved it

its for each number in the array we index it then we start with the first value (firstvalue_x) then
subtract that from the target value(target_val), if the result (secondvalue_y) is in the index and isnt
the index number(firstvalue_x) we subtracted from the target value(target val) that is the
answer(answer) otherwise continue with this loop by increasing the (firstvalue x). we dont have to
look at values we have tested already

public class Solution {
public int[] TwoSum(int[] nums, int target) {
Dictionary<int, int> dict = new Dictionary<int, int>();
// We create an index (dictionary) to store each number and its position in the array.
for (int n = 0; n < nums.Length; n++) {
// We start a loop to go through each number in the array. The variable 'i" is the position of the current number
(firstvalue_x).
int complement = target - nums[n];
// We subtract the current number (firstvalue_x) from the target value (target val), the result is the complement
(secondvalue_y).
if (dict.ContainsKey(complement) && dict[complement] !'=n) {
// We check if the complement (secondvalue_y) is in the index (dictionary) and its position is not the same as the
current position (firstvalue_x).
return new int[] { dictfcomplement], n };
/I If the above condition is true, we've found the answer (answer). We return the positions of the two numbers
that add up to the target.
}
dictfnums[n]] = n;
// If the complement is not in the index, we add the current number and its position to the index (dictionary) and
continue with the loop by increasing the current position (firstvalue_x).
}
throw new Exception("There's a problem with your code or the input array is bad");
/! If we've gone through all the numbers and haven't found two numbers that add up to the target, we throw an
exception.
// we need this to allow compiler to compile because the compiler requires that all code paths in a function must
return a value if the function is declared to return a value

/I we *have* to have this or it just fails at compiling

}

cases for question

case 1[2,7,11,15] target =9
case 2 [3,2,4] target = 6
case 3 [3,3] target =6

The code works for these test questions
Follow-up: Can you come up with an algorithm that is less than 0(n?) time complexity?
i asked chat gpt coz idk if it is off the top of my head coz i cant think lol

"Yes, the provided solution fits the follow-up question. The time complexity of this solution is O(n),
which is less than O(n"2).

Here's why:

The solution iterates over the nums array only once. For each number, it performs operations that
take constant time: calculating the complement, checking if the complement is in the dictionary,
and adding a number to the dictionary. Therefore, the time complexity is proportional to the size of
the nums array, which is O(n)."

what does leetcode say to my answer?
well it likes it :D i guess its about as fast as it can be, especially if you remove the comments

i did some minor optimizations
and heres what i got

s] = LeetCode - The World's Leadin: X =+

_ A 26 A 33
<~ C Q8 = leetcode.com, o ® L @ 9 w oy w & Y B &
@ Getting Started #% New Tab &J Getting Started [dmi linode &3 Showdown! 2 Select trip | Limocar P... 915 How to Run Stable Dif.. #% NewTab = (142) Converting Any... > Merge OperationstoT.. > [Other Bookmarks

C— Problem List Premium
Description Editorial = Sol (; Submissions
0 Editorial =+ Solution

Runtime

120 ms

}
dict[nums[n]] = n;

of users with C#
1

return

2. Add Two Numbers

* 15.35um * 18.45um * 167. Two Sum Il - Input Array Is Sorted

a minute ago

Intuition

The problem asks for finding two numbers in an array that add up to a specific target. The "easy"
but inefficient way would be to check all possible pairs of numbers, which would take O(n”2) time.
Instead, we can use the property of addition: for any number z, if x + y equals z, then y must be
equal to z minus x. So, for each number in the array, we can check its complement to the target [z]

https://library.naruzkurai.com/uploads/images/gallery/2023-07/t0timage.png

(i.e., [z] - x) and then check if this complement is in the array. If it is, and it's not the same index
we're currently looking at, we've found the two numbers we need. To make this check fast, we can
use a hash table (or a Dictionary in C#) to store the numbers from the array and their indices.

Approach

My English pseudo code/thought process is

"for each number in the array, we index it.

then we start with the first indexed value (firstvalue_x)

then subtract that from the target value (target val_z),

if the result (secondvalue_y) is in the index and isnt the index number(firstvalue_x) we subtracted
from the target value(target val z) that is the answer ([x, y]) otherwise continue with this loop by
increasing the (firstvalue_x).

we do not have to look at values we have tested already because that would be redundant

The approach is to iterate through the array and for each number, calculate its complement to the
target and check if this complement is already in the Dictionary. If it is, and it's not the same
element (i.e., it has a different index), we've found two numbers that add up to the target and we
return their indices. If the complement is not in the Dictionary, we add the current number and its
index to the Dictionary. This way, we don't have to revisit numbers we've already processed, which
would be redundant.

Complexity

e Time complexity:
The time complexity is O(n), where n is the length of the array. We're iterating through
the array once, and for each number, we're performing constant time operations
(calculating the complement, checking if it's in the dictionary, and adding a number to the
dictionary).

e Space complexity:
The space complexity is also O(n), where n is the length of the array. In the worst case,
we might end up adding every number in the array to the dictionary.

Extra

this is my first post.

It took me a bit of digging to learn what to use in c# for this specifically coz ive only ever used it for
unity @~@ and i usuially use python so it was a bit of a challenge to get the code to not give an
error XD

and i found out that it wont compile if we dont have an exception handler if theres an error in a
hypothetical input....
S000 since we are using c# ive found that using

throw new Exception("exception");

is slower on avg
o}

return null;

is used

also since im new to leetcode.com ive foundout that the compieler speeds can be subject to rng,
also submissions have processing priority ig.

my codes runtime is 120 and worst is 145

its avg is in the low 130s

Code

public class Solution {
public int[] TwoSum(int[] nums, int target) {

Dictionary<int, int> dict = new Dictionary<int, int>();

for (int n = 0; n < nums.Length; n++) {
int complement = target - nums[n];
if (dict.ContainsKey(complement) && dict[complement] !'= n) {

return new int[] { dictfcomplement], n };

}
dictflnums[n]] = n;

}

return null;

Revision #2
Created 28 July 2023 13:52:19 by naruzkurai
Updated 28 July 2023 16:57:06 by naruzkurai

